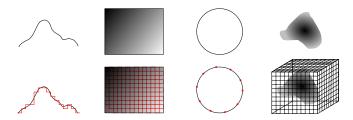


Anders Kaestner :: Paul Scherrer Institut

Introduction to Computed Tomography

Part V: Sampling and noise

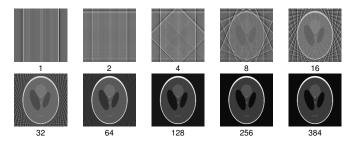
1 Sampling in reconstruction


Different kinds of sampling

Noise

The inversion formula is impractical since it would require infinite amount of equations to solve.

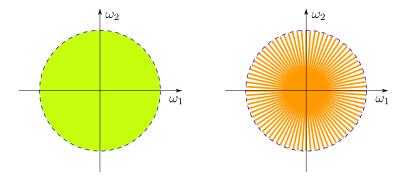
- The projections are digital images
 - Intensity sampling [bits/pixel]
 - Spatial sampling [pixels/mm]
- The rotation is done in steps
- The reconstruction is done on a finite matrix



How many projections are needed?

The number of projections is determined by the sampling theorem [Buzug, 2008].

$$m{N}_{
m projections}=rac{\pi}{2}\,m{N}_{
m u}$$


 N_u Number of pixels in the direction perpendicular to the axis of rotation.

Intuitive proof of the sampling theorem

Basic idea The unit circle in the Fourier domain must be filled.

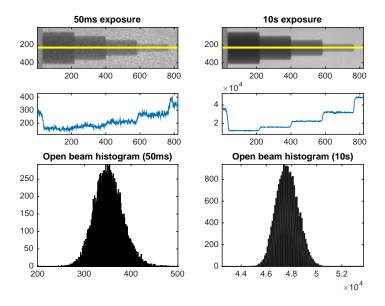
Noise

Noise is a statistical phenomenon.

$$\mathcal{R}^{-1}\left\{\left.\right\} + \mathcal{R}^{-1}\left\{\left.\right\}\right\} = \mathcal{R}^{-1}\left\{\left.\right\}\right\} \rightarrow \left.\right\}$$

Noise sources:

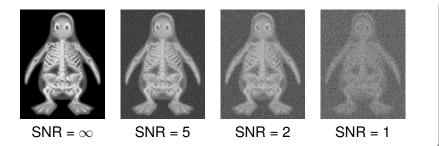
- Noise induced by the radiation source.
- Thermal noise from the electronics.
- Algorithmic, rounding errors, interpolation model etc.

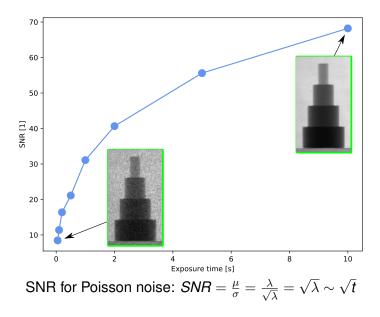

The noise level of a slice is directly connected to the dose used. Definition

$$Dose = Flux \times Time$$

The signal to noise ratio can be improved by increasing

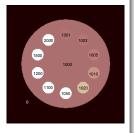
- the beam intensity,
- the exposure time,
- the number of projections,
- detector exchange.




A metric to describe noise strength

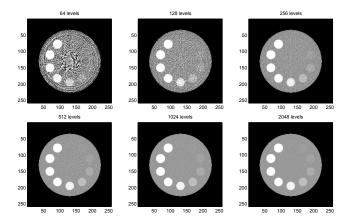
$$SNR = rac{\mu_{image}}{\sigma_{image}}$$
 (1)
 $SNR_{db} = 20 \log rac{\mu_{image}}{\sigma_{image}}$ (2)

- Select a region
- Compute average intensity
- Compute std deviation
- Apply eqns 1 or 2


What influences the contrast?

$$C_{slice} \ W_{sample} \sim C_{projection} \ N_{projections}$$

C_{slice} Slice contrast $C_{projection}$ Projection contrast (Open beam - darkest region) $N_{projections}$ Number of projections W_{sample} Largest width of the sample in pixels



Parameters

- *w*=192
- N_{projections}=288
- *C*_{projection}=6, 7, 8, 9, 10,11, 12, 13 bits
- Contrast ratio: 1000:1, ..., 1:2
- Noise free

Changing projection contrast with constant number of projections

The reconstruction noise decrease with increasing dynamics

- Digital images are digitized on many levels.
- The number of projections is important for the image quality.
- The neutron flux and exposure time affect the SNR.
- A well utilized gray-level dynamics is important.

Buzug, T. (2008).

Introduction to Computed Tomography: From photon statistics to modern cone-beam CT. Springer.