

Anders Kaestner :: Paul Scherrer Institut

Introduction to Computed Tomography
Part IV: Geometry

1 Beamline configurations
2 Common beam geometries

3 Beam geometry in neutron imaging
4 Large samples
5 The acquisition axis

6 Summary

Lecture outline

- Common beam geometry and their use
- Beam geometry for neutron imaging
- The importance of the acquisition axis

Static beamline

- Simples beam geometry
- Single pixels are scanned

■ The 'Hounsfield-approach'

■ Produces 2D projections

- No geometric unsharpness

■ Simple reconstruction, filtered back projection [Buzug, 2008]

■ Line-wise scan

- Beam incidence must be perpendicular to detector plane
■ Magnifying in one direction

+ Uses 2D-projections.
+ Magnifying due to beam divergence.
- Non-trivial reconstruction using [Feldkamp et al., 1984].
- Only in the central slice is exact.

■ Exact 3D solution

- Long objects

■ Reconstruction using Katsevich[Katsevich, 2002]

Neutron imaging - Pin hole geometry

Penumbra blurring

Collimation ratio

The width of the penumbra blurring is described by the collimation ratio:
L Distance from aperture to sample

$$
\frac{L}{D}=\frac{l}{d}
$$

D Width of aperture diameter
/ Distance from sample to detector
d Width of unsharpness

Beam divergence

Typical collimation ratio L/D $=100-2000[\mathrm{~mm} / \mathrm{mm}]$

(a)

(b)

(c)

Fig 3. Schematic of the edge sample (a) and neutron radiographs obtained with the sample at $3 \mathrm{~mm}(\mathrm{~b})$ and 320 mm (c) away from the detector. The edge unsharpness is mainly caused by penumbra blurring.

Fig 4. It is possible to estimate the collimation ratio by measuring the edge unsharpness at different distances from the detector.

Improved results using CBCT reconstruction

Requirement

Projections from at least $180^{\circ}+$ sample must always be visible.

Full field of view

Partial field of view

Two options to handle samples larger than the field of view

- Translate the COR and use a 360° orbit.
- Truncated reconstruction

Translated projections

Idea

- Translate the COR to the side of the projection
- Near doubled FOV

Requirements

- The projections must be stitched
- Projections must be acquired over 360°
- More voxels requires more projections

A truncated tomography has incomplete data support.

Effects of truncation

1 Some attenuation information is missing \rightarrow bias The shadow contains more attenuation than the projection data shows.
2 Truncation gives spikes on the edges.
The derivative in the reconstruction formula produce edge artifacts.

Origin The derivative of the truncated edge is steep
Solution Add a smooth transition from edge to zero

Original

Padded

Position of the acquisition axis

The axis

The point where all rays intersect is called the center of rotation for a single slice or the rotation axis for many slices. This point must be provided to the reconstructor.

Centering artifacts

The impact of center misalignment

Projection data

- Mirror one projection
- Translate until they overlap

■ Center = midpoint + translation distance

Reconstructed data

center $=$ current $\pm \mathrm{dR} / 2$

Tilled sample or table

Along the beam

- Hard to correct
- Requires vector based reconstructor and geometry

Across the beam

Small angles corrected with COR shifts
Large angles corrected with rotation

■ In tomography, different beam geometries are used.
■ Neutron imaging is approximately parallel.

- The acquisition axis is very important.

■ The sample should be in the field of view.

References I

Buzug, T. (2008).
Introduction to Computed Tomography: From photon statistics to modern cone-beam CT. Springer.

Feldkamp, L., Davis, L., and Kress, J. (1984).
Practical cone-beam algorithm.
J. Opt Soc. Am. A, 1(6):612-619.

Kaestner, A., Grünzweig, C., and Lehmann, E. (2012).
Improved analysis techniques for new applications in neutron imaging.
In Proc 18th World Conference on Nondestructive Testing, pages 1-10.

Kaestner, A., Kis, Z., Radebe, M., Mannes, D., Hovind, J., Grünzweig, C., Kardjilov, N., and Lehmann, E. (2017). Samples to determine the resolution of neutron radiography and tomography.
Physics Procedia, 88:258-265.

Katsevich, A. (2002).
Theoretically exact filtered backprojection-type inversion algorithm for spiral ct.
SIAM Journal on Applied Mathematics, 62(6):2012-2026.

