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Learning objectives

m Understanding the sinogram

m How projections are related to slices
m Different reconstruction techniques
m Reconstruction filters
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Short recap

m Acquisiton from different views give depth information
m Reconstruction is not trivial

180
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The reverse process — reconstruction

The scanning provides projection data. . .

... but we want to find the cross section which caused the
projection.

We have to find the inverse Radon transform or solve the
equation system Ax =y
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Acquistion and rearranging the projection data

Sinogram construction
Combine take the same line from all projections into a new image

From projection line 50
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rom projection line 70

‘ The information required to reconstruct a single slice. \




=) Looking at the sinogram
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(=1J» The Radon Transform and the sinogram

Projection and sinogram

/ Detector array
/ Object

Projection profile

The Radon transform
An analytical description of projection / acquired at angle ¢

p:—ln(l(ue) / k(x,y) 5(XCos6+ysm9 u)dxdy
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[Radon, 1917]
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Theorem

Inversion — Fourier slice theorem

The Fourier transform of a parallel projection p(x) of an object f(x, y) obtained at an angle 6 equals a line through

origin in the 2D Fourier transform of f(x, y) at the same angle.
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Analytical solution

Reconstruction in the frequency domain
k(X,y) — / / |w|P(w, 9) ei27rw(xcos€)+ysin 0) dwdb
0 —o0

Reconstruction in the spatial domain
k(x,y) = #/ / op/ou(u,8)[x cosf + ysinf — u]_1 dudo
0 —o0

Convolution Rotation

i)
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‘ Back projection
2 Log-Norm Artifact Filter
- = (=l .‘ Removal = Fo ) £ | (6]
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Some line integrals in the sinogram

The value of a single pixel is given by the line integral along a

sine.

Sinogram

Cross section
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The reconstruction filter

Reconstruction in the spatial domain

k(x,y) = #/0 / ap/ou(u,0) [xcosb + ysin — u]~" duds

Convolution

Rotation

The filter
The filter has two components:

m A derivative: 9p/ou(u,6) = F~'(Jw| - F(p))
m Apodization: Shepp-Logan, Hamming, efc

Filter
FrU{HW) R (s}

Log-Norm
)

Artifact
Removal
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Back projection
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Reconstructed
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Reconstruction filter in action

Projection Profile plot FT{profile}
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The effect of the reconstruction filter

None

Hamming
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Apodization filters suppress noise and blur edges
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When the analytical solution has problems

Few projections

Irregularly distributed

Limited view

Low SNR or contrast

Few levels R Low SNR
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(F=[J» Iterative methods overview

Algebraic methods

Statistical methods

= A:?RTT m Maximum likelihood
=S m Penalized ML
mTV
m etfc..
m etc...
Pros & cons

+ Sparse, irregularly sampled projection data

m Limited angle
m Few views

+ Physical model can be included
- Requires prior information for best performance.

- Time consuming
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Why iterative inversion

Building the system matrix

ayXyt+apxet+... = W
a0 ain X 34
a1 X3+ apXs+... = Yo .
anXitaixXxz+... = y3 '
anit -+ ann XN YN
You have:

m 1000 projections which are 1000 pixels wide
m The reconstructed slice has 1000x 1000

This gives 1000x 1000 x 1000 = 10° equations
— Ais a10° x 10° matrix!
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F=J®» Some features of A

m Sparse matrix

m lll-posed (ideally infinitely many equations needed)
m Inversion doesn’t provide unique solution
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Algebraic Reconstruction Method (ART)

Problem to solve

We want to solve the equation Ax = y,
where A is the forward projection operator, a large sparse matrix

v

Kaczmarz method (ART)

Yi— <aia Xk>

k+1 k
X = X"+ A\
a2

1
a; the i row of the system matrix A.

the reconstructed image at the k' iteration.
y; the i element of the sinogram

Ak relaxation parameter

x
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Statistic reconstruction methods

Problem to solve
We want to solve the equation Ax = y + noise,

lteration scheme
Maximize likelihood function:

LR e

/ = / Y=H(x) @Y—T
l—>Prob(x)—l

Update strategy <
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Summary

Reconstrution is

m The process to convert projections into volumes
m Different techniques can be used:

Analytical - filtered back projection
Algebraic - schemes to solve huge equation systems
Statistical - using noise models
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