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Introduction



Learning objectives

Understand the image formation process
Understand the differences between analytical and iterative
reconstruction
Knowing key parameters in tomographic reconstruction and
how they impact the resulting images
Recognizing typical artifacts and how to remove them



The problem

We have a solid item to investigate. . .

For a first look of the outside

Cut the item in pieces

Next step, use a transmission image



Different sources to illuminate the sample

X-rays

Photoelectric effect

Compton scattering

Electromagnetic radiation.

Interaction with the
electron shells.

Neutrons

Absorbtion

Scattering Transmission

Neutral particle beam.

Interaction with the
nucleus.



Transmission image – the projection

A ray illuminates a semi-transparent medium

p(u,θ)

Detector array

Object

k(x,y)

Projection profile



Transmission imaging – Radiography

A ray penetrating a medium is attenuated according to
Beer-Lamberts law The intensity is attenuated in the medium
according to

I = I0e
∫

L k(x ,y) dl

I - Intensity behind the sample
I0 - Incident intensity
k - Attenuation coefficient,

µ - Linear attenuation coefficient X-rays
Σ - Macroscopic cross-section for neutrons

L - Line through the sample.



Computing an attenuation image

From Beer-Lamberts law we get

p = − log

(
r − rDC

rOB − rDC

)
= − log


−

−

 =

p Normed projection
r Measured radiogram

rDC Dark current image (removes noise floor)
rOB Open beam image, measured I0

Each pixel represent the line integral
∫

L k(x)dx through the sample.



Generalized attenuation law 1D

Piecewise constant sample
Few discrete regions

I = I0 e−
∑N

i=1 ki xi

Continuous samples
Let xi = ∆x and ∆x → 0

I = I0 e−
∫

L k(x) dx



Attenuation coefficients

X-rays at 150keV
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Some attenuation examples for neutrons
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Neutron tomography of fist-sized
lead canon ball from the battle of
Bossworth (1485AD)



Limitation of the radiography

5.8

Projection

Position (u)

A
tte

nu
at

io
n 

co
ef

.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

6.6

=

Great local changes buried in the sum of bulk
Depth position can’t be determined



Stereography

Use two projections at 90◦ to get depth information
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Provides some depth information
Still a lot of guessing



The solution is not unique

Single projection→ several solutions

Two projections→ several solutions

A unique solution would exist only for an infinite number
of noiseless continuous projections



What is tomography?

A method to capture three-dimensional images.
An indirect method using projections (radiograms) to
reconstruct the inner structure of a sample.
Free translation is slice imaging
from Greek:

Tomos – ’a section’ or ’a cutting’
Graph – write



History

1917 Radon developed the foundation for the
inversion required by tomography.

1956 Bracewell the relationships between
Fourier transform and Radon transform.

1963 First applications to medical tomography.
Kuhl obtained first backprojection.
Cormack applied Radon’s results to
radiograms.

1970 Publication of the first CT image.
1970-1973 Cormack & Hounsfield first CT scanner.

1979 Cormack & Hounsfield the Nobel prize
in Medicine.

J. Radon (1887–1956)

R. Bracewell
(1921–2007)

D Kuhn (1929–2017)

A. Cormack
(1924–1998)

Sir G.N. Hounsfield
(1919–2004)



Inspecting the sample from different views
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A first attempt to reconstruction: Algebraic solution

Observations

2 3 → 5
1 4 → 5
↓ ↓
3 7

Equation system
a11x1 + a12x2 = y1

a21x3 + a22x4 = y2

a11x1 + a21x3 = y3

a12x2 + a22x4 = y4
...

⇒ A x = y

Solve the equation system for x

Many equations, sparse matrix A, no unique solution...



A first attempt to reconstruction: Back-projection

1 projections 2 projections 4 projections

8 projections 16 projections 32 projections

The solution is too smooth. . . something is missing!!!



Reconstruction



The reverse process – reconstruction

The scanning provides projection data. . .

z

x

y

. . . but we want to find the cross section which caused the
projection.

We have to find the inverse Radon transform or solve the
equation system A x = y



Acquistion and rearranging the projection data

Sinogram construction
Combine take the same line from all projections into a new image

The information required to reconstruct a single slice.



Looking at the sinogram



The Radon Transform and the sinogram

Projection and sinogram

p(u,θ)

Detector array

Object

k(x,y)

Projection profile

The Radon transform
An analytical description of projection I acquired at angle θ

p = − ln

(
I(u, θ)

I0(u)

)
︸ ︷︷ ︸

Measured

=

∫ ∞
−∞

k(x , y)︸ ︷︷ ︸
Wanted

δ(x cos θ + y sin θ − u)︸ ︷︷ ︸
Observation ray

dx dy

[Radon, 1917]



Inversion – Fourier slice theorem

Theorem
The Fourier transform of a parallel projection p(x) of an object f (x, y) obtained at an angle θ equals a line through
origin in the 2D Fourier transform of f (x, y) at the same angle.
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Analytical solution

Reconstruction in the frequency domain

k(x , y) =

∫ π

0

∫ ∞
−∞
|ω|P(ω, θ) ej2πω(x cos θ+y sin θ) dωdθ

Reconstruction in the spatial domain
k(x , y) =

1
2π2

∫ π

0

∫ ∞
−∞

∂p/∂u(u, θ)︸ ︷︷ ︸
Convolution

[x cos θ + y sin θ − u]−1︸ ︷︷ ︸
Rotation

dudθ

Back projection
FilterSinograms Log-Norm

Reconstructed 
volume

 Artifact
Removal



Some line integrals in the sinogram

The value of a single pixel is given by the line integral along a
sine.

Sinogram
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The reconstruction filter

Reconstruction in the spatial domain
k(x , y) =

1
2π2

∫ π

0

∫ ∞
−∞

∂p/∂u(u, θ)︸ ︷︷ ︸
Convolution

[x cos θ + y sin θ − u]−1︸ ︷︷ ︸
Rotation

dudθ

The filter
The filter has two components:

A derivative: ∂p/∂u(u, θ) ≡ F−1(|ω| · F(p))

Apodization: Shepp-Logan, Hamming, etc

Back projection
FilterSinograms Log-Norm

Reconstructed 
volume

 Artifact
Removal



Reconstruction filter in action
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The effect of the reconstruction filter
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When the analytical solution has problems

Few projections Irregularly distributed

Limited view Low SNR or contrast
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Iterative methods overview

Algebraic methods

ART
SIRT
TV
etc...

Statistical methods

Maximum likelihood
Penalized ML
etc..

Pros & cons
+ Sparse, irregularly sampled projection data

Limited angle
Few views

+ Physical model can be included
- Requires prior information for best performance.
- Time consuming



Why iterative inversion

Building the system matrix

a11x1 + a12x2 + . . . = y1

a21x3 + a22x4 + . . . = y2

a11x1 + a21x3 + . . . = y3

...

 a11 · · · a1N
...

. . .
...

aN1 · · · aNN


 x1

...
xN

 =

 y1
...

yN



Example
You have:

1000 projections which are 1000 pixels wide
The reconstructed slice has 1000× 1000

This gives 1000× 1000 × 1000 = 109 equations
→ A is a 109 × 109 matrix!



Some features of A

Sparse matrix
Ill-posed (ideally infinitely many equations needed)
Inversion doesn’t provide unique solution



Algebraic Reconstruction Method (ART)

Problem to solve
We want to solve the equation A x = y ,
where A is the forward projection operator, a large sparse matrix

Kaczmarz method (ART)

xk+1 = xk + λk
yi − 〈ai , xk 〉
‖ai‖2

ai

ai the i th row of the system matrix A.
xk the reconstructed image at the k th iteration.
yi the i th element of the sinogram
λk relaxation parameter



Statistic reconstruction methods

Problem to solve
We want to solve the equation A x = y + noise,

Iteration scheme
Maximize likelihood function:

45
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0

Error

Prob(x)

Y=H(x)

Update strategy

Y



Beam geometry



Different beamline configurations

Static beamline Rotating beamline



Pencil-beam

Simples beam geometry
Single pixels are scanned
The ’Hounsfield-approach’



Parallel beam

Produces 2D projections
No geometric unsharpness
Simple reconstruction, filtered
back projection [Buzug, 2008]



Fan beam

Line-wise scan
Beam incidence must be
perpendicular to detector plane
Magnifying in one direction



Cone beam

+ Uses 2D-projections.
+ Magnifying due to beam

divergence.
- Non-trivial reconstruction using

[Feldkamp et al., 1984].
- Only in the central slice is exact.



Problems with cone-beam

Center line

Cone angle

Source-sample distance 

Source-detector distance 

D
etector

Parallel discs

FDK (cone angle
30◦)



Neutron imaging – Pin hole geometry

Penumbra blurring

Collimation ratio
The width of the penumbra blurring is described by the collimation ratio:

L
D

=
l
d

L Distance from aperture to sample

D Width of aperture diameter

l Distance from sample to detector

d Width of unsharpness



Beam divergence

Typical collimation ratio L/D = 100 – 2000 [mm/mm]

[Kaestner et al., 2017]



The impact of beam divergence

a

b

Detector pixels

Sample

Divergent 
beam 

Divergent 
beam 

Divergent 
beam 



Improved results using CBCT reconstruction

Central Perifery 90◦ Perifery 45◦
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[Kaestner et al., 2012]



Helical scans

z

Trajectory

Source
Exact 3D solution
Long objects
Reconstruction using
Katsevich[Katsevich, 2002]



Large samples – The problem

Requirement
Projections from at least 180◦ + sample must always be visible.

Two options to handle samples larger than the field of view
Translate the COR and use a 360◦ orbit.
Truncated reconstruction



Translated projections

Idea
Translate the COR to the side of the projection
Near doubled FOV

Support of the sample

Detector

Center of rotation

Beam

Requirements
The projections must be stitched
Projections must be acquired over 360◦

More voxels requires more projections



Truncated or Local tomography

A truncated tomography has incomplete data support.

Effects of truncation
1 Some attenuation information is missing→ bias

The shadow contains more attenuation than the projection
data shows.

2 Truncation gives spikes on the edges.
The derivative in the reconstruction formula produce edge
artifacts.



Removing truncation artifacts

Origin The derivative of the truncated edge is steep
Solution Add a smooth transition from edge to zero

Original Padded



Position of the acquisition axis

The axis
The point where all rays intersect is
called the center of rotation for a single
slice or the rotation axis for many
slices. This point must be provided to
the reconstructor.

45
90

135

180

0

Centering artifacts



The impact of center misalignment

Center offset = -8 pixels
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The finding center

Projection data

Mirror one projection
Translate until they overlap
Center = midpoint + translation
distance

Reconstructed data

dR

center = current ± dR/2



Tilted sample or table



Tilted acquisition axis

Along the beam

Hard to correct
Requires vector based
reconstructor and
geometry

Across the beam

Small angles corrected with
COR shifts

Large angles corrected with
rotation



Sampling



Discretizing the reconstruction formula

The inversion formula is impractical since it would require infinite
amount of equations to solve.

The projections are digital images
Intensity sampling [bits/pixel]
Spatial sampling [pixels/mm]

The rotation is done in steps
The reconstruction is done on a finite matrix



How many projections are needed?

The number of projections is determined by the sampling
theorem [Buzug, 2008].

Nprojections =
π

2
Nu

Nu Number of pixels in the direction perpendicular to the axis of
rotation.

1 2 4 8 16

32 64 128 256 384



Intuitive proof of the sampling theorem

Basic idea The unit circle in the Fourier domain must be filled.



Noise and Dose

Noise
Noise is an additive statistical phenomenon.

R−1
{ }

+R−1
{ }

= R−1
{ }

→

Noise sources:
Thermal noise from the electronics.
Algorithmic, rounding errors, interpolation model etc.
Noise induced by the radiation source.

Dose
The dose is the amount of radiation events hitting the detector.
More events improve the SNR (the law of great numbers).



Noise, exposure time, and number of projections

The noise level of a slice is directly connected to the dose used.
The dose is defined as

Dose = Flux × Time

The signal to noise ratio can be improved by increasing
the beam intensity,
the exposure time,
the number of projections,
detector exchange.



Contrast

What influences the contrast?

Cslice Wsample ∼ Cprojection Nprojections

Cslice Slice contrast
Cprojection Projection contrast (Open beam - darkest region)

Nprojections Number of projections
Wsample Largest width of the sample in pixels



Contrast experiment

The phantom
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w=192
Nprojections=288
Cprojection=6, 7, 8, 9, 10,11, 12, 13 bits
Contrast ratio: 1000:1, . . . , 1:2
Noise free



What can be seen?

Changing projection contrast with constant number of projections
256 levels
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The reconstruction noise decrease with increasing dynamics



Artefacts



Common artefacts

Rings are caused by stuck or dead pixels. They have the
same value for all projections

Lines are caused by single pixels or groups pixels in a
single projection

High contrast these artifacts appear as star-like streaks
originating from the high contrast object.

Motion when the sample changes during acquisition.
Beam hardening Polychromatic beam

Scattering The beam is scattered



Ring artifacts

Ring artefacts are very common in tomography.
They are caused by a stuck, dead, or hot pixels.
They appear as:

Lines in the sinogram
Concentric rings in the CT slices



Correction in the Radon space

Projections Identify and remove spots that persists through
projections.

Sinograms Identify lines parallel to the θ-axis
Subtract first derivative of average projection
form sinogram.
Filter sinogram in Fourier domain (notch filter or
wavelet filter).

︸ ︷︷ ︸
s(u,θ)

− ︸ ︷︷ ︸
1T ·(Eu [s]−medianN(Eu [s]))

=



Correction in the matrix

Correction procedure:
Transform matrix to polar coordinates
Detect lines
Make replacement map
Transform map to Carthesian coordinates
Correct matrix

Advantage Good for testing different strengths
Disadvantage The coordinate transformations



Line artifacts

Projection Reconstructed slice

Line artifacts are more common with neutrons
The origin of a line is a local spot in the sinogram.
The orientation and position depends on when the spot was
registered.



Correction of the lines

Correction method
Detect the spots on the projections – compute local
variances
Replacement e.g.
pcorrected = w(σ) · p + (1− w(σ)) · pmedian with 0 ≤ w ≤ 1
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Motion artifacts

Sequential acquisition Golden ratio acquisition



Suppressing the effect of motion

Dynamic processes are hard to observe with CT
CT needs long scan times.
If the interfaces move more than 1 pixel during the scan
motion artifacts will appear.

The solution

Increment the acquisition angle by the Golden ratio φ = 1+
√

5
2

The sample will always be observed at ’orthogonal’ angles.

[Köhler, 2004, Kaestner et al., 2011]



Cupping

Definition
Cupping is a phenomenon that appears as a drop of attenuation
coefficients in large homogeneous bodies. The main origins are:
Beam hardening when the radiation attenuation depends on

energy.
Scattering background scattering adds a bias.



Cupping due to Beam hardening

The attenuation depends on energy

Monochromatic

length

measured
attenuation

Polychromatic

length

measured
attenuation



Attenuation for neutrons

The attenuation law assumes the intensity to be absorbed. . .

This is not true for neutrons!!!

Most neutrons are scattered
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Background and sample scattering

Scattered neutrons are
bad for

Quantitative imaging
Segmentation
algorithms

+ =

Uncorrected Corrected by QNI [Hassanein, 2006]



Scattering correction next generation

Measurements Correction and result

Estimate scattering
profile using black
bodies.
Correction using revised
projection normalization

[Boillat et al., 2018]



Demonstrating the effect of BB correction

Samples: Cylinders of bone. Scanned at ICON.

Normalized Scatter corrected with BB

Data courtesy of E. Törnquist, Lund University



Summary



Summary

Tomography is an indirect acquisition method
Different sources can be used
The perfect tomography needs

many projections
well illuminated projections

Artifacts may and will appear but can mostly be corrected.



Questions

I’m done Your turn



Filtered back-projection (Proof)

Image function:

f (x, y) =

∫ ∞
−∞

∫ ∞
−∞

F (ξ1, ξ2) ej2π(xξ1+yξ2) dξ1dξ2

Coordinate transform {ξ1, ξ2} = {ω cos θ, ω sin θ}

f (x, y) =

∫ 2π

0

∫ ∞
−∞

F (ω cos θ, ω sin θ) ej2πω(x cos θ+y sin θ) dωdθ

Fourier slice theorem:

f (x, y) =

∫ 2π

0

∫ ∞
−∞

P(ω, θ) ej2πω(x cos θ+y sin θ)
ω dωdθ

Symmetry properties:
P(ω, θ + π) = P(−ω, θ)

Rotated coordinates:

f (x, y) =

∫ π

0

∫ ∞
−∞

P(ω, θ) ej2πω(x cos θ+y sin θ)|ω| dωdθ



A basic back-projection algorithm

pPro j : p o i n t e r to l i n e i n sinogram
pSl i ce : p o i n t e r to s l i c e mat r i x

f o r ( f l o a t l i n e =0; l i n e <nPro jec t i ons ; l i n e ++) { / / Loop over p r o j e c t i o n s i n sinogram
f o r ( s i z e _ t y =0; y<SizeY ; y++) { / / Loop over mat r i x i n y

const s i z e _ t c fS ta r tX = mask [ y ] . f i r s t ; / / Get x−coord ina tes
const s i z e _ t cfStopX = mask [ y ] . second ;
fS ta r tU += cos ( the ta [ l i n e ] ) ; / / Compute f i r s t p r o j . pos .
f l o a t fPosU=fStar tU −s in ( the ta [ l i n e ] ) * c fS ta r tX ;

f o r ( s i z e _ t x= c fS ta r tX ; x<cfStopX ; x++) { / / Loop over mat r i x i n x
i n t nPosU= s t a t i c _ c a s t < i n t >( fPosU−= s in ( the ta [ l i n e ] ) ) ; / / Compute p o s i t i o n

const f l o a t i n te rpB=fPosU−nPosU ; / / I n t e r p o l a t i o n weight r i g h t
const f l o a t i n te rpA =1.0 f − in te rpB ; / / I n t e r p o l a t i o n weight l e f t

pS l i ce [ x+y * sizeX ]+= in te rpA * pPro j [ nPosU]+ in te rpB * pPro j [ nPosU + 1 ] ;
}

}
}
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