
Quantitative Big Imaging - Scaling up

Anders Kaestner

May 11, 2023

CONTENTS

0.1 Scaling Up and Big Data . 1
0.2 Programming paradigms . 9
0.3 Organization . 11
0.4 Databases . 13
0.5 Big Data . 15
0.6 Environments for distributed computing . 22
0.7 Cloud computing . 33
0.8 Summary . 36

i

ii

Quantitative Big Imaging - Scaling up

This is the lecture notes for the 10th lecture of the Quantitative big imaging class given during the spring semester 2021
at ETH Zurich, Switzerland.

0.1 Scaling Up and Big Data

%load_ext autoreload
%autoreload 2
import seaborn as sns
import matplotlib.pyplot as plt
from bokeh.resources import CDN
from bokeh.io import output_notebook

output_notebook(CDN, hide_banner=True)
local_cluster = False
if local_cluster:

from dask.distributed import Client, LocalCluster
cluster = LocalCluster(n_workers=2, threads_per_worker=2)
client = Client(cluster)

plt.rcParams["figure.figsize"] = (8, 8)
plt.rcParams["figure.dpi"] = 72
plt.rcParams["font.size"] = 16
plt.rcParams["figure.constrained_layout.use"] = True
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['DejaVu Sans']
plt.style.use('ggplot')
sns.set_style("whitegrid", {'axes.grid': False})

0.1.1 Literature / Useful References

Big Data

• Google’s Presentation on Distributed Computing
– Slides

• J. Dean et al. 2008, MapReduce: Simplified Data Processing on Large Clusters
• Scalable Systems Course
• Tutorial in Hadoop
• Intro to Data Science @UCB

Cluster Computing

• Altintas, I. (2013). Workflow-driven programming paradigms for distributed analysis of biological big data. In
2013 IEEE 3rd International Conference on Computational Advances in Bio and medical Sciences (ICCABS)

• Condor High-throughput Computing
• Condor Setup at ITET
• Sun (now Oracle) Grid Engine

0.1. Scaling Up and Big Data 1

http://www.youtube.com/watch?v=yjPBkvYh-ss&feature=youtu.be
http://www.slideshare.net/tugrulh/google-cluster-computing-and-mapreduce-introduction-to-distributed-system-design
https://doi.org/10.1145/1327452.1327492
https://courses.cs.washington.edu/courses/cse490h/08au/
http://www.youtube.com/watch?v=KwW7bQRykHI
http://amplab.github.io/datascience-sp14/
http://www.cs.wisc.edu/condor/
https://computing.ee.ethz.ch/Services/Condor
http://gridscheduler.sourceforge.net/htmlman/manuals.html

Quantitative Big Imaging - Scaling up

Databases

• Ollion, J., Cochennec, J., Loll, F., Escud, C., & Boudier, T. (2013). TANGO: a generic tool for high-throughput
3D image analysis for studying nuclear organization. Bioinformatics (Oxford, England), 29(14)

Cloud Computing

• Amazon S3
• Sitaram, D., & Manjunath, G., 2012. Moving To The Cloud. null (Vol. null). Elsevier.
• Duan, P., Wang, W., Zhang, W., Gong, F., Zhang, P., & Rao, Y. (2013). Food Image Recognition Using Pervasive
Cloud Computing. In 2013 IEEE International Conference on Green Computing and Communications and IEEE
Internet of Things and IEEE Cyber, Physical and Social Computing (pp. 1631-1637). IEEE.

0.1.2 Outline

• Computer Science Principles
– Parallelism
– Distributed Computing
– Imperative Programming
– Declarative Programming

• Organization
– Queue Systems / Cluster Computing
– Parameterization
– Databases

• Big Data
– MapReduce
– Spark
– Streaming

• Cloud Computing
• Beyond / The future

0.1.3 Motivation

There are three different types of problems that we will run into.
• Really big data sets
• Many data set
• Explorative studies

2 CONTENTS

https://doi.org/10.1093/bioinformatics/btt276
https://doi.org/10.1093/bioinformatics/btt276
https://aws.amazon.com/s3
https://doi.org/10.1016/B978-1-59749-725-1.00006-8
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.296
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.296
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.296

Quantitative Big Imaging - Scaling up

Really big data sets

• Several copies of the dataset need to be in memory for processing
– Computers with more 256GB are expensive and difficult to find
– Even they have 16 cores so still 16GB per CPU
– Drive speed / network file access becomes a limiting factor

• If it crashes you lose everything
– or you have to manually write a bunch of messy check-pointing code

Many datasets

• For genome-scale studies 1000s of samples need to be analyzed identically
• Dynamic experiments can have hundreds of measurements
• Animal phenotyping can have many huge data-sets (1000s of 328GB datasets)
• Radiologists in Switzerland alone make 1 Petabyte of scans per year

Exploratory Studies

Not sure what we are looking for
You need it to be

• Easy to develop new analyses
• Quick to test hypotheses

0.1.4 Example Projects

Zebra fish Full Animal Phenotyping

Full adult animal at cellular resolution 1000’s of samples of full adult animals
• Imaged at 0.74 𝜇𝑚 resolution:
• Images 11500 x 2800 x 628
• 20-40GVx / sample!

Objectives

• Identification of single cells (no down-sampling)
• Cell networks and connectivity
• Classification of cell type
• Registration with histology

0.1. Scaling Up and Big Data 3

Quantitative Big Imaging - Scaling up

0.1.5 Brain Project

Whole brain with cellular resolution1 𝑐𝑚3 scanned at 1 𝜇𝑚 resolutionImages ⟶ 1000 GVx / sample
• Registration separate scans together
• Blood vessel structure and networks
• Registration with fMRI, histology

0.1.6 What is wrong with usual approaches?

Inital workflow

Normally when problems are approached they are solved for a single task as quickly as possible
• I need to filter my image with a median filter with a neighborhood of 5 x 5 and a square kernel
• then make a threshold of 10
• label the components
• then count how many voxels are in each component
• save it to a file

im_in = imread('test.jpg');
im_filter = medfilt2(im_in,[5,5]);
cl_img = bwlabel(im_filter>10);
cl_count = hist(cl_img,1:100);
dlmwrite(cl_count,'out.txt')

You want changes in the workflow

What if want to …
• compare Gaussian and Median?
• look at 3D instead of 2D images?
• run the same analysis for a folder of images?

You have to rewrite everything, everytime

If you start with a bad approach, it is very difficult to fix,

• big data and
• reproducibility

must be considered from the beginning

4 CONTENTS

Quantitative Big Imaging - Scaling up

0.1.7 Computer Science Principles

Disclosure : There are entire courses / PhD thesis’s / Companies about this, so this is just a quick introduction
• Parallelism
• Distributed Computing
• Resource Contention
• Shared-Memory
• Race Conditions
• Synchronization
• Dead lock
• Imperative
• Declarative

What is parallelism?

Parallelism is when you can:
• divide a task into separate pieces
• which can then be worked on at the same time.

An example

If you have to walk 5 minutes and talk on the phone for 5 minutes

Walking 5min Walk & talk 5minTalking 5min

Tasks serially Tasks in parallel

Fig. 1: Walking and talking as serial and parallel tasks.

• you can perform the tasks serially which then takes 10 minutes
• you can perform the tasks in parallel which then takes 5 minutes

Some tasks are easy to parallelize while others are very difficult.
Rather than focusing on programming, real-life examples are good indicators of difficultly.

0.1. Scaling Up and Big Data 5

Quantitative Big Imaging - Scaling up

0.1.8 What is distributed computing?

Distributed computing is very similar to parallel computing, but a bit more particular.
• Parallel means you process many tasks at the same time,
• Distributed means you are no longer on the same CPU, process, or even on the same machine.

The distributed has some important implications since once you are no longer on the samemachine the number of variables
like

• network delay,
• file system issues,
• and other users on the system

becomes a major problem.

Distributed Computing Examples

1. You have 10 friends who collectively know all the capital cities of the world.
• To find the capital of a single country you just yell the country and wait for someone to respond (+++)
• To find who knows the most countries, each, in turn, yells out how many countries they know and you select the
highest (++)

2. Each friend has some money with them
• To find the total amount of money you tell each person to tell you how much money they have and you add it
together (+)

• To find themedian coin value, you ask each friend to tell you all the coins they have and you make one master list
and then find the median coin (-)

A more parallel median

Assume you have limited number of items like coins.
• Each friend makes a histogram of their coins
• Merge the histograms from each friend to get the median.

0.1.9 Resource Contention

The largest issue with parallel / distributed tasks is the need to access the same resources at the same time
• memory / files
• pieces of information
• network resources

6 CONTENTS

Quantitative Big Imaging - Scaling up

Dead-lock

Dining Philopher’s Problem
• 5 philosophers at the table
• 5 forks
• Everyone needs two forks to eat
• Each philospher takes the fork on his left…

Challenges in parallel processing

1. Coordination

Parallel computing requires a significant of coordinating between computers for non-easily parallelizable tasks.

2. Mutability

The second major issue is mutability, if you have two cores / computers trying to write the same information at the same
it is no longer deterministic (not good)

3. Blocking

The simple act of taking turns and waiting for every independent process to take its turn can completely negate the benefits
of parallel computing

0.1.10 Parallel speedup and slowdown

Depend on:
• Available resources
• Implementation
• Scheduling
• Overhead

nCPU = np.linspace(1,8,8)
speedup = np.array([1,2,3,4,5,6,7,8])
realspeedup = 0.9 * speedup + 0.1
realspeedup[5:] = np.array([5.2, 5.5, 5])

fig, ax1 = plt.subplots(figsize=(10,6))

ax1.set_xlabel('# CPUs')
ax1.set_ylabel('Processing time')
ax1.plot(nCPU, 1/speedup,marker="o", color="limegreen",label = 'Ideal processing time

↪')
ax1.plot(nCPU, 1/realspeedup,marker="o",linewidth=3,color="seagreen", label = 'Real␣

↪processing time')

(continues on next page)

0.1. Scaling Up and Big Data 7

http://en.wikipedia.org/wiki/Dining_philosophers_problem

Quantitative Big Imaging - Scaling up

(continued from previous page)

ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis

ax2.set_ylabel('Speedup') # we already handled the x-label with ax1
ax2.plot(nCPU, speedup, marker="o",color="cornflowerblue", label = 'Ideal speedup')
ax2.plot(nCPU, realspeedup, marker="o", linewidth=3,color="navy",label = 'Real speedup

↪')
ax1.axvline(x=5,linewidth=1, color='darkorange', ymax=0.9)
ax1.axvline(x=7,linewidth=1, color='crimson',ymax=0.9)
fig.legend();
ax1.set_title("Performance of parallel computing");

NameError Traceback (most recent call last)
Cell In[2], line 1
----> 1 nCPU = np.linspace(1,8,8)

2 speedup = np.array([1,2,3,4,5,6,7,8])
3 realspeedup = 0.9 * speedup + 0.1

NameError: name 'np' is not defined

Real performance test run - Spotting hotspots

A time consuming component
Introduced parellel code
The two graphs show the execution time of a tomographic reconstruction as a system task including data IO and prepro-
cessing. Splitting the timing per task in this way makes it possible to identify which part of the processing that consumes
much processing time. In this example it appears that the single threaded implementation of the ring cleaning algorithm
is takes a dominant fraction of the total processing time. This is therefore the target of tuning. There is a remarkable
speed-up by distibuting the task on the available cores.
This example, there are components that are easy parallelize by altering the algorithm while others are harder. The yellow
block labelled “other” mainly represents the time needed to read input data and to store the results. This brings us to take
a closer look at Amdahls law.

Theoretical speed-up - Amdahl’s law

The code can be divided into two parts:
• sequential
• parallelizable

𝑆𝑙𝑎𝑡𝑒𝑛𝑐𝑦(𝑠) = 1
(1 − 𝑝) + 𝑝

𝑠
𝑝 - time consumed by paralleizable code𝑠 - number of cores

8 CONTENTS

Quantitative Big Imaging - Scaling up

0.1.11 Challenges in distributed processing

Inherits all of the problems of parallel programming with a whole variety of new issues.

Sending Instructions / Data Afar

Fault Tolerance

If you have 1000 computers working on solving a problem and one fails, you do not want your whole job to crash

Data Storage

How can you access and process data from many different computers quickly without very expensive infrastructure

0.2 Programming paradigms

0.2.1 Imperative Programming

Directly coordinating tasks on a computer.
• Languages like C, C++, Java, Matlab
• Exact orders are given (implicit time ordering)
• Data management is manually controlled
• Job and task scheduling is manual
• Potential to tweak and optimize performance

Making a soup (from lecture 1)

1. Buy vegetables at market
2. then Buy meat at butcher
3. then Chop carrots into pieces
4. then Chop potatos into pieces
5. then Heat water
6. thenWait until boiling then add chopped vegetables
7. thenWait 5 minutes and add meat

0.2. Programming paradigms 9

Quantitative Big Imaging - Scaling up

0.2.2 Declarative

• Languages like SQL, Erlang, Haskell, Scala, Python, R can be declarative
• Goals are stated rather than specific details
• Data is automatically managed and copied
• Scheduling is automatic but not always efficient

Making a soup (from lecture 1)

• Buy vegetables at market → 𝑠ℎ𝑜𝑝𝑣𝑒𝑔𝑔𝑖𝑒𝑠

• Buy meat at butcher → 𝑠ℎ𝑜𝑝𝑚𝑒𝑎𝑡

• Wait for 𝑠ℎ𝑜𝑝𝑣𝑒𝑔𝑔𝑖𝑒𝑠: Chop carrots into pieces → 𝑐ℎ𝑜𝑝𝑝𝑒𝑑𝑐𝑎𝑟𝑟𝑜𝑡𝑠

• Wait for 𝑠ℎ𝑜𝑝𝑣𝑒𝑔𝑔𝑖𝑒𝑠: Chop potatos into pieces → 𝑐ℎ𝑜𝑝𝑝𝑒𝑑𝑝𝑜𝑡𝑎𝑡𝑜𝑠

• Heat water
• Wait for 𝑏𝑜𝑖𝑙𝑖𝑛𝑔𝑤𝑎𝑡𝑒𝑟,𝑐ℎ𝑜𝑝𝑝𝑒𝑑𝑐𝑎𝑟𝑟𝑜𝑡𝑠,𝑐ℎ𝑜𝑝𝑝𝑒𝑑𝑝𝑜𝑡𝑎𝑡𝑜𝑠: Add chopped vegetables
• Wait 5 minutes and add meat

0.2.3 Comparison

They look fairly similar, so what is the difference?

Imperative soup

Declarative soup

1. Buy {carrots, peas, tomatoes} at market
2. then Buy meat at butcher
3. then Chop carrots into pieces
4. then Chop potatos into pieces
5. then Heat water
6. thenWait until boiling then add chopped vegetables
7. thenWait 5 minutes and add meat
• Buy {carrots, peas, tomatoes} at market → 𝑠ℎ𝑜𝑝𝑣𝑒𝑔𝑔𝑖𝑒𝑠

• Buy meat at butcher → 𝑠ℎ𝑜𝑝𝑚𝑒𝑎𝑡

• Wait for 𝑠ℎ𝑜𝑝𝑣𝑒𝑔𝑔𝑖𝑒𝑠: Chop carrots into pieces → 𝑐ℎ𝑜𝑝𝑝𝑒𝑑𝑐𝑎𝑟𝑟𝑜𝑡𝑠

• Wait for 𝑠ℎ𝑜𝑝𝑣𝑒𝑔𝑔𝑖𝑒𝑠: Chop potatos into pieces → 𝑐ℎ𝑜𝑝𝑝𝑒𝑑𝑝𝑜𝑡𝑎𝑡𝑜𝑠

• Heat water
• Wait for 𝑏𝑜𝑖𝑙𝑖𝑛𝑔𝑤𝑎𝑡𝑒𝑟,𝑐ℎ𝑜𝑝𝑝𝑒𝑑𝑐𝑎𝑟𝑟𝑜𝑡𝑠,𝑐ℎ𝑜𝑝𝑝𝑒𝑑𝑝𝑜𝑡𝑎𝑡𝑜𝑠: Add chopped vegetables
• Wait 5 minutes and ,𝑠ℎ𝑜𝑝𝑚𝑒𝑎𝑡: add meat

The second is needlessly complicated for one person, but what if you have a team:

10 CONTENTS

Quantitative Big Imaging - Scaling up

• how can several people make an imperative soup faster (chopping vegetables together?)
• How can many people make a declarative soup faster? Give everyone a different task (not completely efficient since
some tasks have to wait on others)

0.2.4 Results

Imperative

• optimize specific tasks (chopping vegetables, mixing) so that many people can do it faster
– Matlab/Python do this with fast-fourier-transforms (automatically uses many cores to compute faster)

• make many soups at the same time (independent)
– This leads us to cluster-based computing

Declarative

• run everything at once
• each core (computer) takes a task and runs it
• execution order does not matter

– wait for portions to be available (dependency)

An alternative - Lazy Evaluation

• do not run anything at all
• until something needs to be exported or saved
• run only the tasks that are needed for the final result

– never buy tomatoes since they are not in the final soup

0.3 Organization

One of themajor challenges of scaling up experiments and analysis is keeping all of the results organized in a clear manner.
As we have seen in the last lectures, many of the results produced many text files

• many files are difficult to organize
• Matlab, R are designed for in-memory computation
• Datasets can have many parameters and be complicated
• Transitioning from Excel to Python, Matlab, or R means rewriting everything

0.3. Organization 11

Quantitative Big Imaging - Scaling up

0.3.1 Queue Computing

Queue processing systems (like Sun Grid Engine, Oracle Grid Engine, Apple XGrid, Condor, etc) are used to manage
Resources
Computers, memory, storage

• a collection of processors (CPU and GPU)
• memory, local storage
• access to bandwidth or special resource like a printer
• for a given period of time

Jobs
Tasks to be run

• specific task to run
• necessary (minimal/maximal) resources to run with
• including execution time

Users
People who submit jobs

• accounts submitting jobs
• it can be undesirable for one user to dominate all of the resources all the time

Based on a set of rules for how to share the resources to the users to run tasks.

0.3.2 Structure of Cluster

Master (or Name) Node(s)

The node with which every other node communicates, the main address.

Worker Nodes

The nodes where the computation is performed.

Scheduler

The actual process that decides which jobs will run using which resources (worker nodes, memory, bandwidth) at which
time

12 CONTENTS

Quantitative Big Imaging - Scaling up

0.4 Databases

A database is a collection of data stored in the format of tables:
• a number of columns (data categories in the table)
• and rows (stored items)

from IPython.display import display, Markdown
import pandas as pd
display(Markdown('### Animals\nHere we have an table of the animals measured in an␣

↪experiment and their weight'))
display(pd.DataFrame(dict(id=(1, 2, 3),

Weight=(100, 40, 80)
)))

display(Markdown(
'### Cells\nThe cells is then an analysis looking at the cellular structures'))

display(pd.DataFrame(dict(
Animal=(1, 2, 3),
Type=("Cancer", "Healthy", "Cancer"),
Anisotropy=(0.5, 1.0, 0.5),
Volume=(1, 2, 0.95))))

Non-consecutive header level increase; 0 to 3 [myst.header]

id Weight
0 1 100
1 2 40
2 3 80

Non-consecutive header level increase; 0 to 3 [myst.header]

Animal Type Anisotropy Volume
0 1 Cancer 0.5 1.00
1 2 Healthy 1.0 2.00
2 3 Cancer 0.5 0.95

0.4.1 SQL

SQL (pronounced Sequel) stands for __S__tructured __Q__uery __L__anguage and is nearly universal for both
• searching (called querying)
• and adding (called inserting) data into databases.

SQL is used in various forms from
• Firefox storing its preferences locally (using SQLite)
• to Facebook storing some of its user information (MySQL and Hive).

So refering to the two tables we defined in the last entry, we can use SQL to get information about the tables independently
of how they are stored (a single machine, a supercomputer, or in the cloud)

0.4. Databases 13

Quantitative Big Imaging - Scaling up

SQL - Basic queries

• Get the volume of all cells

SELECT Volume FROM Cells

→ [1, 2, 0.95]
• Get the average volume of all cancer cells

SELECT AVG(Volume) FROM Cells WHERE Type = "Cancer"

→ 0.975
We could have done these easily without SQL using e.g., Excel or a Pandas data frame in python.

More Advanced SQL

• Get the volume of all cells in heavy mice

SELECT Volume FROM Cells WHERE Animal IN
(SELECT id FROM Animal WHERE Weight>80)

• Get weight and average cell volume for all mice

SELECT ATable.Weight,CTable.Volume FROM Animals as ATable
INNER JOIN Cells as CTable on (ATable.id=CTable.Animal)

→ [1, 0.95]

0.4.2 Beyond SQL: NoSQL

Basic networks can be entered and queries using SQL but relatively simple sounding requests can get complicated very
quickly

Network Analysis

If we try to store cells and their connections in a SQL database, we can handle millions of cells and connections easily in
a structured manner. However trying to perform analysis is trickier

• How many cells are within two connections of each cell

SELECT id,COUNT(*) AS connection_count FROM Cells as CellsA
INNER JOIN Network as NetA ON Where (id=NetA.id1)
INNER JOIN Network as NetB ON Where (NetA.id2=NetB.id1)

This is still readable but becomes very cumbersome quickly and difficult to manage

14 CONTENTS

Quantitative Big Imaging - Scaling up

NoSQL (Not Only SQL)

A new generation of database software which extends the functionality of SQL to allow for
• more scalability (MongoDB)
• or specificity for problems like networks or graphs called generally Graph Databases

0.5 Big Data

0.5.1 Definition

Velocity, Volume, Variety

When a ton of heterogeneous is coming in fast. We need:
• Performant
• Scalable
• Flexible

You are ready when…

• scaling isn’t scary10X, 100X, 1000X is the same amount of effort
• you are starving for enough dataDirector of AMPLab said their rate limiting factor is always enough interesting
data

• no ‘clicks’ per sampleEverything is automated, no human interaction required during processing

0.5.2 A brief oversimplified story

Google ran into ‘big data’ and its associated problems years ago:
• Peta- and exabytes of websites to collect and make sense of.
• Google uses an algorithm called PageRank(tm) for evaluating the quality of websites.

They could have probably used existing tools if page rank were some magic program that could read and determine the
quality of a site

for every_site_on_internet
current_site.rank=secret_pagerank_function(current_site)

end

Just divide all the websites into a bunch of groups and have each computer run a group, easy!

0.5. Big Data 15

https://en.wikipedia.org/wiki/MongoDB

Quantitative Big Imaging - Scaling up

PageRank

While the actual internals of PageRank are not public, the general idea is that sites are ranked based on how many sites
link to them

for current_site in every_site_on_internet
current_pagerank = new SecretPageRankObj(current_site);
for other_site in every_site_on_internet
if current_site is_linked_to other_site

current_pagerank.add_site(other_site);
end

end
current_site.rank=current_pagerank.rank();

end

Complexity 𝑂(𝑁2)

How do you divide this task?

• Maybe try and divide the sites up: english_sites, chinese_sites, …
– Run pagerank and run them separately.
– What happens when a chinese_site links to an english_site?

• Buy a really big, really fast computer?
– On the most-powerful computer in the world, one loop would take months!

It gets better

• What happens if one computer / hard-drive crashes?
• Have a backup computer replace it (A backup computer for every single system)
• With a few computers ok, with hundreds of thousands of computers?
• What if there is an earthquake and all the computers go down?
• PageRank doesn’t just count
• Uses the old rankings for that page
• Run pagerank many times until the ranks converge

Google’s Solution: MapReduce (part of it)

some people claim to have had the idea before, Google is certainly the first to do it at scale
Several engineers at Google recognized common elements in many of the tasks being performed. They then proceeded
to divide all tasks into two classesMap and Reduce

16 CONTENTS

Quantitative Big Imaging - Scaling up

Map

Map is where a function is applied to every element in the list and the function depends only on exactly that element
$�⃗� = [1, 2, 3, 4, 5]𝑓(𝑥) = 𝑥2𝑚𝑎𝑝(𝑓 → �⃗�) = [1, 4, 9, 16, 25]$

Reduce

Reduce is more complicated and involves aggregating a number of different elements and summarizing
them. For example the Σ function can be written as a reduce function $�⃗� = [1, 2, 3, 4, 5]𝑔(𝑎, 𝑏) = 𝑎 +
𝑏𝑅𝑒𝑑𝑢𝑐𝑒𝑡ℎ𝑒𝑛𝑎𝑝𝑝𝑙𝑖𝑒𝑠𝑡ℎ𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑡𝑜𝑡ℎ𝑒𝑓𝑖𝑟𝑠𝑡𝑡𝑤𝑜𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑎𝑛𝑑𝑡ℎ𝑒𝑛𝑡𝑜𝑡ℎ𝑒𝑟𝑒𝑠𝑢𝑙𝑡𝑜𝑓𝑡ℎ𝑒𝑓𝑖𝑟𝑠𝑡𝑡𝑤𝑜𝑤𝑖𝑡ℎ𝑡ℎ𝑒𝑡ℎ𝑖𝑟𝑑𝑎𝑛𝑑𝑠𝑜𝑜𝑛𝑢𝑛𝑡𝑖𝑙𝑎𝑙𝑙𝑡ℎ𝑒𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝑎𝑟𝑒𝑑𝑜𝑛𝑒𝑟𝑒𝑑𝑢𝑐𝑒(𝑓 →
�⃗�) = 𝑔(𝑔(𝑔(𝑔(1, 2), 3), 4), 5)$

0.5.3 MapReduce

Google designed a framework for handling distributing and running such of jobs on clusters.
So for each job a dataset (�⃗�), Map-task (𝑓), a grouping, and Reduce-task (𝑔) are specified

1. Partition input data (�⃗�) into chunks across all machines in the cluster
2. ApplyMap (𝑓) to each element
3. Shuffle and Repartition or Group Data
4. Apply Reduce (𝑔) to each group
5. Collect all of the results and write to disk

All of the steps in between can be written once in a robust, safe manner and then used for every task which can be
described using this MapReduce paradigm.
These tasks ⟨�⃗�, 𝑓(𝑥), 𝑔(𝑎, 𝑏)⟩ is refered to as a job.

0.5.4 Key-Value Pairs / Grouping

The initial job was very basic, for more complicated jobs, a new notion of Key-value (KV) pairs must be introduced.
A KV pair is made up of a key and value:

• A key must be comparable / hashable (a number, string, immutable list of numbers, etc) and is used for grouping
data.

• The value is the associated information to this key.

0.5.5 Counting Words

Using MapReduce on a folder full of text-documents: $�⃗� = ["Info⋯ ", "Expenses⋯ ", ⋯]$

0.5. Big Data 17

Quantitative Big Imaging - Scaling up

Map

is then a function 𝑓 which takes in a long string and returns a list of all of the words (text seperated by spaces) as key-value
pairs with the value being the number of times that word appeared

f(x) = [(word,1) for word in x.split(" ")]

Grouping is then performed by keys (group all words together)

Reduce

adds up the values for each word

Workflow

L = ["cat dog car",
"dog car dog"]

↓ Map ∶ 𝑓(𝑥)
[("cat",1),("dog",1),("car",1),("dog",1),("car",1),("dog",1)]

↓ Shuffle / Group

"dog": (1,1,1)
"car": (1,1)```

$$ \downarrow \textbf{ Reduce } : g(a,b) $$
```[("cat",1),("dog",3),("car",2)]```

Word Count Example

Here we make a word count example using all the lines of Shakespeare’s “A midsommer-night’s dream”

import os
shake_path = 'data/shakespeare.txt'
with open(shake_path, 'r') as f:

all_lines = f.readlines()

print(all_lines[:5])

["A MIDSUMMER-NIGHT'S DREAM\n", '\n', 'Now , fair Hippolyta , our nuptial hour \n',
↪ 'Draws on apace : four happy days bring in \n', 'Another moon ; but O !␣
↪methinks how slow \n']

18 CONTENTS



Quantitative Big Imaging - Scaling up

Imperative / Serial Execution

Here we run the code in an imperative fashion one line at a time.

from tqdm import tqdm
from collections import defaultdict
import string
word_count = defaultdict(lambda: 0) # default count is 0
for c_line in tqdm(all_lines):

for c_word in c_line.lower().strip().split(' '):
v_word = ''.join([c for c in c_word if c in string.ascii_lowercase])
if len(v_word) > 0:

word_count[v_word] += 1

100%|███████████████████████████████| 129107/129107 [00:00<00:00, 239705.02it/s]

Analysis results

print('Shakespeare used', len(word_count), 'different words')
print('Most frequent')
for w, count in sorted(word_count.items(), key=lambda x: -x[1])[:10]:

print(w, '\t', count)
print('\nLeast frequent')
for w, count in sorted(word_count.items(), key=lambda x: x[1])[:10]:

print(w, '\t', count)

Shakespeare used 26982 different words
Most frequent
the 26851
and 24077
i 20535
to 18561
of 16013
you 13856
a 13840
my 12282
that 10761
in 10537

Least frequent
midsummernights 1
wanes 1
newbent 1
solemnities 1
merriments 1
interchangd 1
lovetokens 1
prevailment 1
unhardend 1
filchd 1

0.5. Big Data 19



Quantitative Big Imaging - Scaling up

MapReduce Approach

Here we use the Map Reduce approach to divide the function up into Map and Reduce components
First we need a function to convert lines to words:

import doctest
import copy
import functools
# tests are very important for map reduce

def autotest(func):
globs = copy.copy(globals())
globs.update({func.__name__: func})
doctest.run_docstring_examples(

func, globs, verbose=True, name=func.__name__)
return func

# map function
@autotest
def line_to_words(in_line):

"""
Takes a single line and returns the words and counts
>>> line_to_words("hi i am. bob . ")
['hi', 'i', 'am', 'bob']
"""
words = in_line.lower().strip().split(' ')
v_words = [''.join([c for c in c_word if c in string.ascii_lowercase])

for c_word in words]
return [c_word for c_word in v_words if len(c_word) > 0]

Finding tests in line_to_words
Trying:

line_to_words("hi i am. bob . ")
Expecting:

['hi', 'i', 'am', 'bob']
ok

0.5.6 MapReduce approach using Dask bags

Dask Bag implements operations like
• map,
• filter,
• fold,
• and groupby on collections of generic Python objects.

Execution on bags provide two benefits:
• Parallel: data is split up, allowing multiple cores or machines to execute in parallel
• Iterating: data processes lazily, allowing smooth execution of larger-than-memory data, even on a single machine
within a single partition

20 CONTENTS



Quantitative Big Imaging - Scaling up

Build a bag for the word analysis

import dask.bag as dbag
line_bag = dbag.from_sequence(all_lines, partition_size=10000)
line_bag

dask.bag<from_sequence, npartitions=13>

map_output = line_bag.map(line_to_words).flatten()
map_output

dask.bag<flatten, npartitions=13>

# we cheat a bit for the reduce step
reduce_output = map_output.frequencies()
top10 = reduce_output.topk(10, lambda x: x[1])
bot10 = reduce_output.topk(10, lambda x: -x[1])

Run the analysis

import dask.diagnostics as diag

workers = 10

with diag.ProgressBar(), diag.Profiler() as prof, diag.ResourceProfiler(0.5) as rprof:
print('Top 10\n', top10.compute(num_workers=workers))
print('Bottom 10\n', bot10.compute(num_workers=workers))

[########################################] | 100% Completed | 639.72 ms
Top 10
[('the', 26851), ('and', 24077), ('i', 20535), ('to', 18561), ('of', 16013), ('you
↪', 13856), ('a', 13840), ('my', 12282), ('that', 10761), ('in', 10537)]

[########################################] | 100% Completed | 568.60 ms
Bottom 10
[('midsummernights', 1), ('wanes', 1), ('newbent', 1), ('solemnities', 1), (
↪'merriments', 1), ('interchangd', 1), ('lovetokens', 1), ('prevailment', 1), (
↪'unhardend', 1), ('filchd', 1)]

Visualize parallel task distribution

diag.visualize([prof, rprof]);

0.5. Big Data 21



Quantitative Big Imaging - Scaling up

diag.visualize([prof, rprof]);

0.6 Environments for distributed computing

0.6.1 Hadoop

Hadoop is the opensource version of MapReduce developed by Yahoo and released as an Apache project.
It provides underlying infrastructure and filesystem that handles storing and distributing data so each machine stores some
of the data locally and processing jobs run where the data is stored.

• Non-local data is copied over the network.
• Storage is automatically expanded with processing power.
• It’s how Amazon, Microsoft, Yahoo, Facebook, … deal with exabytes of data

22 CONTENTS



Quantitative Big Imaging - Scaling up

0.6.2 Spark / Resilient Distributed Datasets

Technical Specifications

• Developed by the Algorithms, Machines, and People Lab at UC Berkeley in 2012
• General tool for all Directed Acyclical Graph (DAG) workflows
• Course-grained processing → simple operations applied to entire sets

– Map, reduce, join, group by, fold, foreach, filter,…
• In-memory caching

Zaharia, M., et. al (2012). Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing

Practical Specification

• Distributed, parallel computing without logistics, libraries, or compiling
• Declarative rather than imperative

– Apply operation 𝑓 to each image / block
– NOT tell computer 3 to wait for an image from computer 2 to and perform operation 𝑓 and send it to computer
1

– Even scheduling is handled automatically
• Results can be stored in memory, on disk, redundant or not

0.6.3 Dask

In the pure python ecosystem, there has been a recent development called Dask.
Dask aims to bring

• the fault-tolerant,
• robust distributed computing

to numerical python codes.
In particular the focus has been on taking libraries like numpy and scipy and making them run as easily as possible in a
distributed setting.
We will use these for the examples but they can be applied equally well to Spark and Hadoop-like problems.

0.6.4 Directed acyclical graphs - DAGs

More general than the MapReduce structure is the idea of making directed acyclical graphs.
These are used in

• Spark,
• Dask for distributed computing
• and in Tensorflow and PyTorch

0.6. Environments for distributed computing 23



Quantitative Big Imaging - Scaling up

for massively parallel computing since it allows complex operations to be defined in a declarative way.
This allows them to be optimized later depending on the actual resources available (and re-executed if some of those
resources crash).

Some DAG resources

• PyData Dask - https://dask.pydata.org/en/latest/
• Apache Spark - https://spark.apache.org/
• Spotify Luigi - https://github.com/spotify/luigi
• Airflow - https://airflow.apache.org/
• KNIME - https://www.knime.com/
• Google Tensorflow - https://www.tensorflow.org/
• Pytorch / Torch - http://pytorch.org/

0.6.5 Tensor Comprehensions

Facebook shows an example of why such representations are useful since they allow for the operations to be optimized
later and massive performance improvements even for fairly basic operations.

0.6.6 DAG examples

A basic DAG

Create two 5x5 images and use a single chunk:
• image1 all elements = 0
• image2 all elements = 1

import dask.array as da
from dask.dot import dot_graph
image_1 = da.zeros((5, 5), chunks=(5, 5))
image_2 = da.ones((5, 5), chunks=(5, 5))
dot_graph(image_1.dask,rankdir="LR")

24 CONTENTS

https://dask.pydata.org/en/latest/
https://spark.apache.org/
https://github.com/spotify/luigi
https://airflow.apache.org/
https://www.knime.com/
https://www.tensorflow.org/
http://pytorch.org/


Quantitative Big Imaging - Scaling up

Image arithmetics

We want to compute: $𝑖𝑚𝑎𝑔𝑒4 = (𝑖𝑚𝑎𝑔𝑒1 − 10) + (𝑖𝑚𝑎𝑔𝑒2 ∗ 50)$

image_4 = (image_1-10) + (image_2*50)
dot_graph(image_4.dask,rankdir="LR")

More calculations

𝑖𝑚𝑎𝑔𝑒5 = 𝑖𝑚𝑎𝑔𝑒1 ∗ 𝑖𝑚𝑎𝑔𝑒4

Remember

𝑖𝑚𝑎𝑔𝑒4 = (𝑖𝑚𝑎𝑔𝑒1 − 10) + (𝑖𝑚𝑎𝑔𝑒2 ∗ 50)

image_5 = da.matmul(image_1, image_4)
dot_graph(image_5.dask,rankdir="LR")

0.6. Environments for distributed computing 25



Quantitative Big Imaging - Scaling up

0.6.7 Image Processing using DAGs

the initial examples were shown on very simple image problems.
Here we can see how it looks for real imaging issues.

%matplotlib inline
import dask.array as da
from dask.dot import dot_graph
import numpy as np
from skimage.io import imread
from skimage.util import montage as montage2d
# for showing results
import dask.diagnostics as diag

foam_stack = imread('data/plateau_border.tif')[:-54, 52:-52, 52:-52]
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12,6))
ax1.imshow(np.sum(foam_stack, 0), cmap='bone_r'), ax1.set_title('Sum of all frame')
ax2.imshow(montage2d(foam_stack[::10]), cmap='bone_r'), ax2.set_title('10 frames');

Visualizing the data as 3D rendering

foam_stack.dtype

dtype('uint8')

import pyvista as pv
# img = foam_stack.astype(int)
img = np.random.normal(size=[100,100,100])
grid = pv.UniformGrid()

grid.dimensions = np.array(img.shape) + 1

(continues on next page)

26 CONTENTS



Quantitative Big Imaging - Scaling up

(continued from previous page)

grid.origin = (0, 0, 0) # The bottom left corner of the data set
grid.spacing = (1, 1, 1) # These are the cell sizes along each axis, i.e., the pixel␣

↪size

grid.cell_data["values"] = img.flatten(order="F") # Flatten the array!
slices = grid.slice_orthogonal(x=img.shape[0]//2, z=img.shape[2]//2)
cpos = [

(540.9115516905358, -617.1912234499737, 180.5084853429126),
(128.31920055083387, 126.4977720785509, 111.77682599082095),
(-0.1065160140819035, 0.032750075477590124, 0.9937714884722322),

]
dargs = dict(cmap='plasma')

p = pv.Plotter()
p.add_mesh(slices, **dargs)

p.show()

---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[18], line 11

8 grid.origin = (0, 0, 0) # The bottom left corner of the data set
9 grid.spacing = (1, 1, 1) # These are the cell sizes along each axis, i.e.,

↪ the pixel size
---> 11 grid.cell_data["values"] = img.flatten(order="F") # Flatten the array!

12 slices = grid.slice_orthogonal(x=img.shape[0]//2, z=img.shape[2]//2)
13 cpos = [
14 (540.9115516905358, -617.1912234499737, 180.5084853429126),
15 (128.31920055083387, 126.4977720785509, 111.77682599082095),
16 (-0.1065160140819035, 0.032750075477590124, 0.9937714884722322),
17 ]

File ~/miniconda3/lib/python3.9/site-packages/pyvista/core/datasetattributes.
↪py:223, in DataSetAttributes.__setitem__(self, key, value)

220 raise TypeError('Only strings are valid keys for DataSetAttributes.')
222 has_arr = key in self

--> 223 self.set_array(value, name=key)
225 # do not make array active if it already exists. This covers
226 # an inplace update like self.point_data[key] += 1
227 if has_arr:

File ~/miniconda3/lib/python3.9/site-packages/pyvista/core/datasetattributes.
↪py:623, in DataSetAttributes.set_array(self, data, name, deep_copy)

620 if not isinstance(name, str):
621 raise TypeError('`name` must be a string')

--> 623 vtk_arr = self._prepare_array(data, name, deep_copy)
624 self.VTKObject.AddArray(vtk_arr)
625 self.VTKObject.Modified()

File ~/miniconda3/lib/python3.9/site-packages/pyvista/core/datasetattributes.
↪py:873, in DataSetAttributes._prepare_array(self, data, name, deep_copy)

868 # this handles the case when an input array is directly added to the
869 # output. We want to make sure that the array added to the output is not
870 # referring to the input dataset.

(continues on next page)

0.6. Environments for distributed computing 27



Quantitative Big Imaging - Scaling up

(continued from previous page)

871 copy = pyvista_ndarray(data)
--> 873 return helpers.convert_array(copy, name, deep=deep_copy)

File ~/miniconda3/lib/python3.9/site-packages/pyvista/utilities/helpers.py:176, in␣
↪convert_array(arr, name, deep, array_type)

173 else:
174 # This will handle numerical data
175 arr = np.ascontiguousarray(arr)

--> 176 vtk_data = _vtk.numpy_to_vtk(num_array=arr, deep=deep, array_
↪type=array_type)

177 if isinstance(name, str):
178 vtk_data.SetName(name)

File ~/miniconda3/lib/python3.9/site-packages/vtkmodules/util/numpy_support.py:164,
↪ in numpy_to_vtk(num_array, deep, array_type)

161 result_array.SetNumberOfTuples(shape[0])
163 # Ravel the array appropriately.

--> 164 arr_dtype = get_numpy_array_type(vtk_typecode)
165 if numpy.issubdtype(z.dtype, arr_dtype) or \
166 z.dtype == numpy.dtype(arr_dtype):
167 z_flat = numpy.ravel(z)

File ~/miniconda3/lib/python3.9/site-packages/vtkmodules/util/numpy_support.py:94,␣
↪in get_numpy_array_type(vtk_array_type)

92 def get_numpy_array_type(vtk_array_type):
93 """Returns a numpy array typecode given a VTK array type."""

---> 94 return get_vtk_to_numpy_typemap()[vtk_array_type]

File ~/miniconda3/lib/python3.9/site-packages/vtkmodules/util/numpy_support.py:74,␣
↪in get_vtk_to_numpy_typemap()

72 def get_vtk_to_numpy_typemap():
73 """Returns the VTK array type to numpy array type mapping."""

---> 74 _vtk_np = {vtkConstants.VTK_BIT:numpy.bool,
75 vtkConstants.VTK_CHAR:numpy.int8,
76 vtkConstants.VTK_SIGNED_CHAR:numpy.int8,
77 vtkConstants.VTK_UNSIGNED_CHAR:numpy.uint8,
78 vtkConstants.VTK_SHORT:numpy.int16,
79 vtkConstants.VTK_UNSIGNED_SHORT:numpy.uint16,
80 vtkConstants.VTK_INT:numpy.int32,
81 vtkConstants.VTK_UNSIGNED_INT:numpy.uint32,
82 vtkConstants.VTK_LONG:LONG_TYPE_CODE,
83 vtkConstants.VTK_LONG_LONG:numpy.int64,
84 vtkConstants.VTK_UNSIGNED_LONG:ULONG_TYPE_CODE,
85 vtkConstants.VTK_UNSIGNED_LONG_LONG:numpy.uint64,
86 vtkConstants.VTK_ID_TYPE:ID_TYPE_CODE,
87 vtkConstants.VTK_FLOAT:numpy.float32,
88 vtkConstants.VTK_DOUBLE:numpy.float64}
89 return _vtk_np

File ~/miniconda3/lib/python3.9/site-packages/numpy/__init__.py:305, in __getattr__
↪(attr)

300 warnings.warn(
301 f"In the future `np.{attr}` will be defined as the "
302 "corresponding NumPy scalar.", FutureWarning, stacklevel=2)
304 if attr in __former_attrs__:

--> 305 raise AttributeError(__former_attrs__[attr])

(continues on next page)

28 CONTENTS



Quantitative Big Imaging - Scaling up

(continued from previous page)

307 # Importing Tester requires importing all of UnitTest which is not a
308 # cheap import Since it is mainly used in test suits, we lazy import it
309 # here to save on the order of 10 ms of import time for most users
310 #
311 # The previous way Tester was imported also had a side effect of adding
312 # the full `numpy.testing` namespace
313 if attr == 'testing':

AttributeError: module 'numpy' has no attribute 'bool'.
`np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in␣

↪existing code, use `bool` by itself. Doing this will not modify any behavior and␣
↪is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.

The aliases was originally deprecated in NumPy 1.20; for more details and guidance␣
↪see the original release note at:

https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations

import pyvista as pv

p1 = pv.Plotter()
va = p1.add_volume(foam_stack,cmap='viridis')
f = lambda val: va.GetProperty().SetScalarOpacityUnitDistance(val)
p1.add_slider_widget(f, [-0.1, 1], title="Opacity Distance")
p1.show()

from itkwidgets import view
from IPython.display import display
import itk

if True:
viewer = view(itk.GetImageFromArray(foam_stack.copy()))
display(viewer)

0.6.8 Create a DAG with the foam image

• The image is 100x400x400
• We want 20 slices per chunk
• Scale intensities to from [0,255] to [0,1]

da_foam = da.from_array(
foam_stack/255.0, chunks=(20, 400, 400), name='FoamImage')

dot_graph(da_foam.dask)

0.6. Environments for distributed computing 29



Quantitative Big Imaging - Scaling up

Add filter operation

• We want to use the Dask version of scipy.ndfilter.gaussian_filter

import dask_ndfilters as da_ndfilt
image_filt = da_ndfilt.gaussian_filter(1-da_foam, sigma=(3, 6, 6))
dot_graph(image_filt.dask,rankdir="LR")

Why so complicated?

The filter needs to process the boundaries correctly
This requires an exchange of boundary data between the blocks.

Add segment and erode to the DAG

• Apply a threshold at 0.9
• Erode with a ball structure element with radius 12

#import scipy.ndimage.morphology as ndmorph
import dask_ndmorph as ndmorph
from skimage.morphology import ball
erode_foam = ndmorph.binary_erosion(image_filt > 0.9, ball(12))
dot_graph(erode_foam.dask,rankdir='LR')

30 CONTENTS



Quantitative Big Imaging - Scaling up

Label the items in the image

• Create a label function
• Labels must be globally unique

from scipy.ndimage import label

def block_label(in_block, block_id=None):
slice_no = block_id[0]
offset = (np.prod(in_block.shape)*slice_no).astype(np.int64)
label_img = label(in_block)[0].astype(np.int64)
label_img[label_img > 0] += offset
return label_img

lab_bubbles = erode_foam.map_blocks(block_label, dtype='int64')

Run the labelling DAG

The labelling is executed with a profiler to check the timing

with diag.ProgressBar(), diag.Profiler() as prof, diag.ResourceProfiler(0.5) as rprof:
processed_stack = lab_bubbles.compute(num_workers=4)

[########################################] | 100% Completed | 8.70 sms

Results of running the DAG

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))
ax1.imshow(np.sum(processed_stack, 1), cmap='bone_r')
ax2.imshow(montage2d(processed_stack[::20]), cmap='nipy_spectral');

0.6. Environments for distributed computing 31



Quantitative Big Imaging - Scaling up

Profiler output

diag.visualize([prof, rprof]);

0.6.9 The importance of operation order

Select a slice and filter
Filter and select a slice

foam_slices_da = da.from_array(
foam_stack/255.0, chunks=(10, 500, 500), name='FoamSlices')

filt_slices = da_ndfilt.gaussian_filter(foam_slices_da, sigma=(1.0, 9, 9))
single_slice = filt_slices[50]

single_slice.visualize(filename="singleslice.svg", optimize_graph=True);
filt_slices.visualize(filename="filtslices.svg" , optimize_graph=True);

Compare performance

fig, (ax1,ax2) = plt.subplots(1,2,figsize=(12,5))
with diag.ProgressBar():

ax1.imshow(single_slice.compute( num_workers = 4))
ax2.imshow(filt_slices.compute( num_workers = 4)[50])

[########################################] | 100% Completed | 207.44 ms
[########################################] | 100% Completed | 417.62 ms

32 CONTENTS



Quantitative Big Imaging - Scaling up

Same output but different timing!

What happened?

Select a slice and filter
Filter and select a slice

• A single slice only activates the chunks needed (lazy evaluation)
• 3 Chunks are processed
• The image is divded into 10 chunks
• All chunks are processed
• The slice is taken from the result

0.7 Cloud computing

0.7.1 Motivation for Cloud Computing

Local recources

• Local resources are expensive and underutilized
• Management and updates are expensive and require dedicated IT staff

0.7. Cloud computing 33



Quantitative Big Imaging - Scaling up

Cloud Resources

• Automatically setup
• “Unlimited” potential capacity and storage
• Cluster management already setup
• Common tools with many people using the same

0.7.2 Spark - A rich, heavily developed platform

Available Tools

Tools built for table-like data data structures and much better adapted to it.
• K-Means,
• Matrix Factorization, Genomics, Graph Analytics, Machine Learning

34 CONTENTS

https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/SparkKMeans.scala
https://amplab.cs.berkeley.edu/projects/dfc-%C2%A0divide-and-conquer-matrix-factorization/
https://amplab.cs.berkeley.edu/projects/dna-processing-pipeline/
https://amplab.cs.berkeley.edu/projects/graphx/
https://amplab.cs.berkeley.edu/projects/mlbase/


Quantitative Big Imaging - Scaling up

Commercial Support

Dozens of major companies (Apple, Google, Facebook, Cisco, …) donate over $30M a year to development of Spark
and the Berkeley Data Analytics Stack

• 2 startups in the last 6 months with seed-funding in excess of $15M each

Academic Support

• All source code is available on GitHub
• Elegant (20,000 lines vs my PhD of 75,000+)
• No patents or restrictions on usage
• Machine Learning Course in D-INFK next semester based on Spark

0.7.3 Beyond: Streaming

Post-processing goals

• Analysis done in weeks instead of months
• Some real-time analysis and statistics

Streaming

• Can handle static data
• or live data coming in from a ‘streaming’ device like a camera to do real-time analysis.

The exact same code can be used for real-time analysis and static code

Scalability

• Connect more computers.
• Start workers on these computer.

0.7.4 Beyond: Approximate Results

Projects at AMPLab like Spark and BlinkDB are moving towards approximate results.
• Instead of mean(volume)
• mean(volume).within_time(5)

• mean(volume).within_ci(0.95)

For real-time image processing it might be the only feasible solution and could drastically reduce the amount of time spent
on analysis.

0.7. Cloud computing 35



Quantitative Big Imaging - Scaling up

0.8 Summary

• More can be done in parallel
• Limited resources, redundancy, race conditions
• Cloud computing
• DAGs

36 CONTENTS


	Scaling Up and Big Data
	Literature / Useful References
	Big Data
	Cluster Computing
	Databases
	Cloud Computing

	Outline
	Motivation
	Really big data sets
	Many datasets
	Exploratory Studies

	Example Projects
	Zebra fish Full Animal Phenotyping
	Objectives


	Brain Project
	What is wrong with usual approaches?
	Inital workflow
	You want changes in the workflow
	If you start with a bad approach, it is very difficult to fix,


	Computer Science Principles
	What is parallelism?
	An example


	What is distributed computing?
	Distributed Computing Examples
	A more parallel median

	Resource Contention
	Dead-lock
	Challenges in parallel processing
	1. Coordination
	2. Mutability
	3. Blocking


	Parallel speedup and slowdown
	Real performance test run - Spotting hotspots
	Theoretical speed-up - Amdahl’s law

	Challenges in distributed processing
	Sending Instructions / Data Afar
	Fault Tolerance
	Data Storage


	Programming paradigms
	Imperative Programming
	Making a soup (from lecture 1)

	Declarative
	Making a soup (from lecture 1)

	Comparison
	Imperative soup
	Declarative soup

	Results
	Imperative
	Declarative
	An alternative - Lazy Evaluation


	Organization
	Queue Computing
	Structure of Cluster
	Master (or Name) Node(s)
	Worker Nodes
	Scheduler


	Databases
	SQL
	SQL - Basic queries
	More Advanced SQL

	Beyond SQL: NoSQL
	Network Analysis
	NoSQL (Not Only SQL)


	Big Data
	Definition
	Velocity, Volume, Variety
	You are ready when…

	A brief oversimplified story
	PageRank
	How do you divide this task?
	It gets better
	Google’s Solution: MapReduce (part of it)
	Map
	Reduce


	MapReduce
	Key-Value Pairs / Grouping
	Counting Words
	Map
	Reduce
	Workflow

	Word Count Example
	Imperative / Serial Execution
	Analysis results

	MapReduce Approach

	MapReduce approach using Dask bags
	Build a bag for the word analysis
	Run the analysis
	Visualize parallel task distribution


	Environments for distributed computing
	Hadoop
	Spark / Resilient Distributed Datasets
	Technical Specifications
	Practical Specification

	Dask
	Directed acyclical graphs - DAGs
	Some DAG resources

	Tensor Comprehensions
	DAG examples
	A basic DAG
	Image arithmetics
	More calculations
	Remember


	Image Processing using DAGs
	Visualizing the data as 3D rendering

	Create a DAG with the foam image
	Add filter operation
	Why so complicated?

	Add segment and erode to the DAG
	Label the items in the image
	Run the labelling DAG
	Results of running the DAG
	Profiler output


	The importance of operation order
	Compare performance
	What happened?


	Cloud computing
	Motivation for Cloud Computing
	Local recources
	Cloud Resources

	Spark - A rich, heavily developed platform
	Available Tools
	Commercial Support
	Academic Support

	Beyond: Streaming
	Post-processing goals
	Streaming
	Scalability

	Beyond: Approximate Results

	Summary

