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Quantitative Big Imaging - Statistics

This is the lecture notes fot the 8th lecture of the Quantitative big imaging class given during the spring semester 2021 at
ETH Zurich, Switzerland.

0.1 Uncertainty, Statistics, and Reproducibility

%load_ext autoreload
%autoreload 2
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
import skimage.filters as flt
import pandas as pd
import matplotlib.patches as patches
import tifffile as tiff
from lecture8_support import *
import confmap as cm
%matplotlib inline

plt.rcParams["font.size"] = 12
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['DejaVu Sans']
#plt.style.use('ggplot')
plt.style.use('default')
sns.set_style("whitegrid", {'axes.grid': False})
dcolors = plt.rcParams['axes.prop_cycle'].by_key()['color']

%config InlineBackend.figure_format = 'retina'

0.1.1 Literature / Useful References

Books

• Jean Claude, Morphometry with R, Chapter 3
• John C. Russ, The Image Processing Handbook,(Boca Raton, CRC Press)
• Gregory J. Privitera, Statistics for the Behavioral Sciences Chapter 8
• Drosg, 2009, “Dealing with uncertainties”, Springer Verlag
• M. Grabe, 2014,”Measurement Uncertainties in Science and Technology”, Springer Verlag
• Ch. Gillmann, 2018,”Image processing under uncertainty”, PhD Thesis, Uni Kaiserslautern
• Leland and Wilkinson, Grammar of Graphics
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http://link.springer.com/book/10.1007%2F978-0-387-77789-4
http://dx.doi.org/10.1201/9780203881095
http://www.sagepub.com/upm-data/40007_Chapter8.pdf
https://doi.org/0.1007/978-3-642-01384-3
https://doi.org/10.1007/978-3-319-04888-8
https://kluedo.ub.rptu.de/frontdoor/deliver/index/docId/5470/file/Dissertation_Christina_Gillmann.pdf
http://www.springer.com/gp/book/9780387245447
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Papers / Sites

• Databases Introduction
• Measurement errors - European Commission Glossary
• Detection limit - Wikipedia
• Error propagation
• Error bands - Stack exchange
• Visualizing Genomic Data (General Visualization Techniques)
• NIMRod Parameter Studies
• M.E. Wolak, D.J. Fairbairn, Y.R. Paulsen (2012) Guidelines for Estimating Repeatability. Methods in Ecology
and Evolution 3(1):129-137.

• David J.C. MacKay, Bayesian Interpolation (1991)

Videos / Podcasts

• Google/Stanford Statistics Intro
• Last Week Tonight with John Oliver: Scientific Studies
• Credibility Crisis

Further material

Slides

• How to solve NLP problems
• Kieran Healy, Data Visualization - A practical introduction
• P-Values with Puppies

Model Evaluation

• Julia Evans - Recalling with Precision
• Stripe’s Next Top Model

0.1.2 Previously on QBI …

• Image Enhancement
• Highlighting the contrast of interest in images
• Minimizing Noise
• Understanding image histograms
• Automatic Methods
• Component Labeling
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http://swcarpentry.github.io/sql-novice-survey/
https://cros-legacy.ec.europa.eu/content/measurement-error_en
https://en.wikipedia.org/wiki/Detection_limit
https://www.webassign.net/question_assets/unccolphysmechl1/measurements/manual.html
https://physics.stackexchange.com/questions/496841/what-should-be-the-real-error-band-of-a-fit-function
http://circos.ca/documentation/course/visualizing-genomic-data.pdf
http://www.messagelab.monash.edu.au/nimrod
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.9072
https://www.youtube.com/watch?v=YFC2KUmEebc
https://www.youtube.com/watch?v=0Rnq1NpHdmw
https://www.datacamp.com/community/podcast/credibility-crisis-in-data-science
https://twitter.com/sleepinyourhat/status/1105946169165955073?s=20
https://socviz.co/lookatdata.html
https://hackernoon.com/explaining-p-values-with-puppies-af63d68005d0
https://www.youtube.com/watch?v=ryZL4XNUmwo
https://github.com/stripe/topmodel
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• Single Shape Analysis
• Complicated Shapes

0.1.3 Today’s outline

• Motivation (Why and How?)
• Scientific Goals
• Reproducibility
• Predicting and Validating
• Statistical metrics and results
• Parameterization

– Parameter sweep
– Sensitivity analysis

• Data frames
• Visualization

0.1.4 Quantitative “Big” Imaging

The course has covered imaging enough and there have been a few quantitative metrics,
…but “big” has not really mentioned!
So, what does big mean?

• Not just / even large
• it means being ready for big data

– The three V’s: V olume, V elocity, V ariety
– scalable, fast, easy to customize

So what is “big” imaging?

0.1.5 Objectives

Scientific Studies all try to get to a single or few numbers
• Make sure this number is describing the structure well (earlier lectures)
• Making sure the number is meaningful (today!)

How do we:
1. Compare the number from different samples and groups?

• Within a sample or same type of samples
• Between samples

2. Compare different processing steps like filter choice, minimum volume, resolution, etc?
3. Evaluate our parameter selection?

0.1. Uncertainty, Statistics, and Reproducibility 3
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4. Ensure our techniques do what they are supposed to do?
5. Visualize so much data? Are there rules?

0.1.6 What do we start with?

Going back to our original cell image
1. We have been able to get rid of the noise in the image and find all the cells (lecture 2-4)
2. We have analyzed the shape of the cells (lecture 5)
3. We even separated cells joined together using Watershed (lecture 6)
4. We have created even more metrics characterizing the distribution (lecture 7)

We have at least a few samples (or different regions),
• large number of metrics and
• and almost as large number of parameters to tune

How do we do something meaningful with it?

0.2 Correlation and Causation

One of the most repeated criticisms of scientific work is that correlation and causation are confused.
Correlation

• means a statistical relationship
• very easy to show (single calculation)

Causation
• implies there is a mechanism between A and B
• can be very difficult to show (impossible to prove)

0.2.1 Observational or Controlled

There are two broad classes of data and scientific studies.
• Observational
• Controlled

Each type appears, but it is more likely to perform observational studies in the early stages of a project to gain an overview
of the working field. From this study it you will make observations for more detailed studies which then are controlled.
Observational
Controlled

4 CONTENTS
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Created by Luis Prado
from the Noun Project

Fig. 1: In observational experiments you stand back and only observe what is happening.

Created by Alexis Lilly
from the Noun Project

Fig. 2: In controlled experiments you prepare the samples for a specific purpose and control the environment.

Observational

In observational experiments you are not interfering with the observed phenomenon. You only make a selection of
specimens or individuals that will be measured as they appear.
Exploring large datasets looking for trends

• Population is random
• Not always hypothesis driven
• Rarely leads to causation

Examples of observational experiments

• We examined 100 people
– the ones with blue eyes were on average 10cm taller

• In 100 cake samples
– we found a 0.9 correlation between baking time and bubble size

0.2. Correlation and Causation 5
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Controlled

The controlled experiments are designed to explore specific aspects of a population or phenomenon. To achieve this,
you want to introduce differences between different groups and keep one as reference. The reference group can be the
unmodified samples or samples prepared with an wellknown process.
Most scientific studies fall into this category

• Specifics of the groups are controlled
• Can lead to causation

Examples of controlled experiments

• We examined 50 mice with gene XYZ off and 50 gene XYZ on and as the foot size increased by 10%
• We increased the temperature and the number of pores in the metal increased by 10%

0.3 Qualitative vs Quantitative

Given the complexity of the tree, we need to do some pruning

0.3.1 Qualitative Assessment

• Evaluating metrics using visual feedback
• Compare with expectations from

– other independent techniques
– or approach

• Are there artifacts which are included in the output?
• Do the shapes look correct?
• Are they distributed as expected?
• Is their orientation meaningful?

0.3.2 Quantitative Metrics

With a quantitative approach, we can calculate
• the specific shape
• or distribution metrics on the sample

with each parameter and establish the relationship between
• parameter
• and metric.

6 CONTENTS
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0.4 Handling uncertainties in image processing

0.4.1 Why do we need to talk about the uncertain?

“Scientific knowledge is a body of statements of varying degree of certainty– some most unsure, some nearly
sure, but none absolutely certain.”
As found in Feynman, RP (1997) Surely You Are Joking, Mr. Feynman, Norton, New York.

0.4.2 What we want

Error bars beyond the confidence interval
xkcd - 2110

0.4.3 Error or uncertainty?

Error

The difference between measured value 𝑐′ and true value 𝑐∗

𝑒 = |𝑐′ − 𝑐∗|

You need a ground truth!

Uncertainty

The quantification of the doubt about the measurement result.

𝑢𝑟𝑎𝑛𝑔𝑒 = [𝑐′ − 𝑢, 𝑐′ + 𝑢]

Ch. Gillmann, 2018

0.4.4 Which uncertainties are we dealing with?

Technical uncertainties

• Metric
• Noise
• Unsharpness
• Effects from image processing
• Numerical errors

0.4. Handling uncertainties in image processing 7

https://xkcd.com/2110/
https://kluedo.ub.rptu.de/frontdoor/deliver/index/docId/5470/file/Dissertation_Christina_Gillmann.pdf
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Field specific uncertainties

• Model simplifications
• Variations in population

0.4.5 Uncertainty categories

Systematic

Reproducible - no statistical analysis
• Rounding errors
• Uncalibrated systems
• Algorithmic choices
• Etc.

Random

Statistical fluctuations
• Natural variations in studied population
• Source fluctuations
• Detector noise

8 CONTENTS
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0.4.6 Target practicing

precacc(1000)

Target practicing in statistical terms

precacc(1000,['Large bias','Small bias','Large variance','Small variance'])

0.4. Handling uncertainties in image processing 9
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0.4.7 Counting or measuring

Counting
• Discrete countable items
• Absolute values

Uncertainties: from preparation
Example: area of segmented region
Measuring

• Physical quantities
• Values with uncertainties

Uncertainties: Noise, instrumentation
Example: mixing ratios from gray levels

10 CONTENTS
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0.4.8 Absolute vs relative uncertainties

Errors must be compared from a neutral perspective

Absolute uncertainty

Assume we can measure a distance with an error of 1mm
Distance to the moon - 384400km
The diameter of a coin - 20mm

Relative uncertainty

Relates the error to the measured quantity
Distance to the moon - 0.000000002601457
Diameter of a coin - 0.05

0.4.9 Propagation of uncertainty

Uncertainty of f(x)

𝜎𝑓(𝑥) = 𝜕𝑓
𝜕𝑥 ⋅ 𝜎𝑥

Uncertainty of f(x,y)

𝜎𝑓(𝑥, 𝑦)2 = (𝜕𝑓
𝜕𝑥 ⋅ 𝜎𝑥)

2
+ (𝜕𝑓

𝜕𝑦 ⋅ 𝜎𝑦)
2

+ 𝜕𝑓
𝜕𝑥 ⋅ 𝜕𝑓

𝜕𝑦 ⋅ 𝜎𝑥𝑦⏟⏟⏟⏟⏟
x and y uncorrelated?

0.4.10 Uncertain quantities in imaging experiments

• Pixel size
• Segmentation
• Sampling time stamps in time series
• Intensity levels

0.4. Handling uncertainties in image processing 11
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Three examples

• Determine the pixel size
• Measure the perimeter length
• Meassure water volume behind a pixel

Example measure the pixel size

To measure pixel size we need:
• An object with known length
• An image of the object

pixel size = Object length
Pixel distance between edges

Uncertainty equation

We assume that the two measured values are uncorrelated $𝜎𝑎/𝑏
𝑎/𝑏 = √( 𝜎𝑎

𝑎 )2 + ( 𝜎𝑏
𝑏 )2$

From this tutorial

Our measurements

img1 = tiff.imread('data/edge20mm_0000.tif')
pic = plt.imread('figures/edge_object.jpg')
fig,ax=plt.subplots(1,2,figsize=(12,5))

ax[0].imshow(pic)
ax[0].set_xticks([])
ax[0].set_yticks([])
ax[0].set_title('Real object')

ax[1].imshow(img1,vmin=300,vmax=30000,cmap='gray');
ax[1].set_xlabel('x [pixels]')
ax[1].set_ylabel('y [pixels]');
arrow = patches.FancyArrowPatch((55,104), (526, 73),

mutation_scale=20,
#ec='blue',fc='cornflowerblue',
color='red',
arrowstyle='<|-|>',linewidth=3
)

ax[1].add_patch(arrow);
#ax.annotate(text='', xy=(54,104), xytext=(527,71), arrowprops=dict(arrowstyle='<->',

↪color='yellow',lw=4))
d=np.sqrt((528-53)**2+(104-73)**2)
ax[1].set_title('Distance between edges');

12 CONTENTS
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Quantity Measurement Uncertainty Unit
Caliper distance 20.0 0.05 mm
Pixel distance 464.9 0.32 pixels

A tutorial showing the detailed analysis

Pixel size with uncertainty

We know uncertainty equation for 𝑎/𝑏.
Let’s plug in the pixel meassurements:

𝜎𝑃𝑖𝑥𝑒𝑙𝑠𝑖𝑧𝑒
𝑃𝑖𝑥𝑒𝑙𝑠𝑖𝑧𝑒 = √(𝜎𝑝𝑖𝑥𝑒𝑙𝑠

𝑝𝑖𝑥𝑒𝑙𝑠 )
2

+ (𝜎𝑙𝑒𝑛𝑔𝑡ℎ
𝑙𝑒𝑛𝑔𝑡ℎ )

2

length = 20.0 # mm
error_length = 0.05 # mm
pixels = 464.9 # pixels
error_pixels = 0.32 # pixels

pixel_size = length/pixels

rel_uncertainty = np.sqrt((error_pixels/pixels)**2 + (error_length/length)**2)

print('Pixel size = {0:0.3f} mm/pixel +/- {1:0.4f}%'.format(pixel_size,rel_
↪uncertainty*100))

Pixel size = 0.043 mm/pixel +/- 0.2593%

0.4. Handling uncertainties in image processing 13
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Measurements in segmented images

In lecture 5 we learned to measure
• Area
• Perimeter
• Positions
• Distances

Considering them to be absolute values as we mostly just count pixels…
Let’s see how the uncertainty of the pixel size among others changes this

Meassure the perimeter length

The perimeter length has three sources of uncertainty:
• How were the edge pixels identified? Method choices can introduce biases
• The pixel size…

and…
• How well was the image segmented?Edges are segmented with least confidence

Selecting edge pixels

A method to identify edge pixels is $𝑒𝑑𝑔𝑒(𝑓) = 𝑓 − 𝜀𝑆𝐸(𝑓)$ which pixels depends on the used SE.

Counting perimeter elements

imgs=[plt.imread('figures/edge_detail_pixel_count.png'),
plt.imread('figures/edge_detail_outline.png'),
plt.imread('figures/edge_detail_centerline.png')]

lbls=['Counting pixels (18)', 'Edges facing background (24)','Center line (20.5)']

_,axs = plt.subplots(1,3, figsize=(15,6))
for ax,img,lbl in zip(axs,imgs,lbls) :

ax.imshow(img)
ax.set_title(lbl)
ax.axis('off')

14 CONTENTS
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Perimeter length with uncertainty

Let’s assume we can trust the segmentation:
• Edge is 18 pixels long
• The pixel size is 0.043 mm/pixel ± 0.2593%

Perimeter uncertainty equation

In this case we sum the edge pixels
Derivation of the equation

The uncertainty of a sum of measurements ∑𝑁
𝑖=1 𝑥𝑖 each with all 𝑥𝑖 uncorrelated and the same uncertainty 𝜎𝑥.

Lets start with the derivative: 𝜕𝑓
𝜕𝑥𝑖

= 1 ∀𝑖
now the uncertainty is the squared sum of all 𝑥𝑖

𝜎∑ 𝑥𝑖
2 = ∑𝑁

𝑖=1 𝜎𝑥
2 = 𝑁𝜎𝑥

2

which leads to

𝜎∑ 𝑥𝑖
= 𝜎𝑥 ⋅

√
𝑁

We have 𝜎𝑃𝑖𝑥𝑒𝑙𝑠𝑖𝑧𝑒=0.11 𝜇𝑚, which gives 𝜎𝐸𝑑𝑔𝑒𝑙𝑒𝑛𝑔𝑡ℎ = 0.11 ⋅
√

18 = 0.506𝜇𝑚
The edge length is 774 ± 0.5 𝜇𝑚

Measure water volume from gray levels

In neutron imaging it is common to quantify the water content from radiographs.
• The transmission (gray level) 𝑇 = 𝐼

𝐼0
= 𝑒−𝜇⋅𝑑

• The metric pixel area (pixel size)
The water volume is 𝑉𝑤𝑎𝑡𝑒𝑟 = 𝑝𝑖𝑥𝑒𝑙𝑠𝑖𝑧𝑒2 ⋅ 𝑑
Our uncertainties are now:

• Standard deviation of the transmission (confidence interval)
• The pixel size … again

0.4. Handling uncertainties in image processing 15
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Volume with uncertainty

Let’s assume we can trust the segmentation:
• Thickness 𝑑 = 5 ± 0.01 𝑚𝑚
• The pixel size is 𝑝 = 43 ± 0.11 𝜇𝑚

Volume uncertainty equation

In this case, we know the uncertainty of 𝑉 = 𝑝2 ⋅ 𝑑
Derivation of the equation

The uncertainty of a multi product ∏𝑁
𝑖=1 𝑥𝑖 each with all 𝑥𝑖 uncorrelated and the uncertainty 𝜎𝑥𝑖

, or more specific 𝑥2 ⋅ 𝑦
with 𝜎𝑥 𝜎𝑦.
Lets start with the derivative:
𝜕(𝑥2⋅𝑦)

𝜕𝑥 = 2𝑥𝑦
and
𝜕(𝑥2⋅𝑦)

𝜕𝑦 = 𝑥2

Now the uncertainty is 𝜎𝑥2⋅𝑦
2 = (2𝑥𝑦 ⋅ 𝜎𝑥)2 + (𝑥2 ⋅ 𝜎𝑦)2

Dividing both sides by 𝑥2 ⋅ 𝑦 and taking the square root to get the relative uncertainty
𝜎𝑥2⋅𝑦
𝑥2⋅𝑦 = √ (2𝑥𝑦⋅𝜎𝑥)2

(𝑥2⋅𝑦)2 + (𝑥2⋅𝜎𝑦)2

(𝑥2⋅𝑦)2 = √4 ( 𝜎𝑥
𝑥 )2 + ( 𝜎𝑦

𝑦 )2

Which gives the relative uncertainty $𝜎𝑉
𝑉 = √4 ( 𝜎𝑃𝑖𝑥𝑒𝑙𝑠𝑖𝑧𝑒

𝑃𝑖𝑥𝑒𝑙𝑠𝑖𝑧𝑒 )2 + ( 𝜎𝑑
𝑑 )2$
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Computing the volume with uncertainty

Plugging in the measurements in the equation:

𝜎𝑉
𝑉 = √4 ( 𝜎𝑃𝑖𝑥𝑒𝑙𝑠𝑖𝑧𝑒

𝑃𝑖𝑥𝑒𝑙𝑠𝑖𝑧𝑒)
2

+ (𝜎𝑑
𝑑 )

2

d = 5.0 # mm
d_uncertain = 0.01 # mm
p = 0.043 # mm
p_uncertain = 0.00011 # mm

V = p**2 * d

rel_uncertainty = np.sqrt(4*(p_uncertain/p)**2 + (d_uncertain/d)**2)

print('Volume = {0:0.3f} mm3 +/- {1:0.4f}%'.format(V,rel_uncertainty*100))

Volume = 0.009 mm3 +/- 0.5493%

0.4.11 Confidence of a segmentation

Freely from P. Moonen’s talk at ICTMS2019

There are different ways to evaluate segmentation algorithm performance; From lectures 2, 4, and 5

• Confusion matrix
• ROC curve
• Hit map

… but they require a ground truth
What if we want to know how well an image without ground truth was segmented?

import importlib
importlib.reload(cm)

<module 'confmap' from '/Users/kaestner/lectures/Quantitative-Big-Imaging-2023/
↪Lectures/Lecture-08/confmap.py'>

0.4.12 Confidence map without ground truth

Assume Gaussian noise

s0=1;
noise = np.random.normal(size=[200,200])
fig,ax = plt.subplots(1,2,figsize=(12,5))
ax[0].imshow(noise,cmap='gray')
h,bins = np.histogram(noise.ravel(),bins=100)
normh=h/h.sum()

(continues on next page)

0.4. Handling uncertainties in image processing 17
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(continued from previous page)

ax[1].fill(bins[:-1],normh,alpha=0.5,label='Noise histogram')
x=np.linspace(-5,5,201)
pdf = cm.gaussian(x,0,1)
ax[1].plot(x,1.5*pdf/pdf.sum(),color=dcolors[1], label='Gaussian pdf')
ax[1].legend();

Threshold between two Gaussian classes

From lecture 4

x=np.linspace(-6,6,1000)
h0 = np.exp(-(x-1)**2/2)
h1 = np.exp(-(x+1)**2/2)

gamma=0.5

# Visualization
gidx = np.abs(x - gamma).argmin()
plt.fill(x,h0,label='True positive',alpha=0.3,ec=dcolors[0],lw=2)
plt.fill(x,h1,label='True negative',alpha=0.3,ec=dcolors[1],lw=2)

plt.vlines([x[gidx]],ymin=0,ymax=1,color='magenta',label='Threshold $\gamma$={0}'.
↪format(gamma))

plt.fill_between(x[:gidx],0,h0[:gidx],color=dcolors[2],label='False negative',alpha=0.
↪3,ec=dcolors[2],lw=2)

plt.fill_between(x[gidx:],0,h1[gidx:],color=dcolors[3],label='False positive',alpha=0.
↪3,ec=dcolors[3],lw=2)

plt.legend();
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Compute the confidence based on the class pdf’s

We want the probability mix of the classes for each gray level:
1. Find the pdf for each class using Gaussian Mixture Models (GMM)
2. Normalize

• Peak to one
• AOC is one

3. For each gray level 𝑥 compute weights $𝑤𝑖(𝑥) = 𝑝𝑑𝑓𝑖(𝑥)𝑓𝑜𝑟𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑠w_i(x)=e^{-\frac{(x-\mu_i)^2}{2
\sigma_i^2}}$

4. Then the confidence for class 𝑖 is $𝑐𝑖(𝑥) = 𝑤𝑖(𝑥)
∑𝑗 𝑤𝑗(𝑥)$

5. Create a confidence map using the segmented image to select 𝑐𝑖 for each pixel

What are the weights?

In our algorithm we used 𝑤𝑖(𝑥) = 𝑒− (𝑥−𝜇𝑖)2
2𝜎2

𝑖

x=np.linspace(-5,5,1000)
g0=cm.gaussian(x,-1,1)
g0m=g0.max()
g0=g0/g0.max()
g1=cm.gaussian(x,1,1)

(continues on next page)
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(continued from previous page)

g1m=g1.max()
g1=g1/g1.max()
_,ax=plt.subplots(1)
ax.plot(x,g0,label=r'Class 0')
ax.plot(x,g1,label=r'Class 1')
xx=0.5
arrow = patches.FancyArrowPatch((xx,0), (xx,cm.gaussian(xx,1,1)/g1m),

mutation_scale=20,
color=dcolors[3],
arrowstyle='-|>',linewidth=2,
label=r'$w_1$'
)

ax.add_patch(arrow);

arrow = patches.FancyArrowPatch((xx,0), (xx,cm.gaussian(xx,-1,1)/g0m),
mutation_scale=20,
color=dcolors[2],
arrowstyle='-|>',linewidth=2,
label=r'$w_0$'
)

ax.add_patch(arrow);

ax.text(4,0.5,r'$c_0=\frac{w_0}{w_0+w_1}=\frac{0.3246}{0.3246+0.8825}=0.3207$',
↪size=16)

ax.text(4,0.25,r'$c_1=\frac{w_1}{w_0+w_1}=\frac{0.8825}{0.3246+0.8825}=0.8720$',
↪size=16)

plt.legend()
plt.axis('off');

# print(cm.gaussian(xx,-1,1)/g0m,cm.gaussian(xx,1,1)/g1m,cm.gaussian(xx,-1,1)/g0m/(cm.
↪gaussian(xx,-1,1)+cm.gaussian(xx,1,1)/g1m),cm.gaussian(xx,1,1)/g0m/(cm.gaussian(xx,-
↪1,1)+cm.gaussian(xx,1,1)/g1m))lass
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Example: Three phase segmentation

Our test data
• Three classes with 𝜇=[-3,1,5]
• Gaussian noise 𝒩(𝜇, 𝜎 = 1.0)
• Unsharpness - Gaussian filter (𝜎=1)

ss = 1
N = 20
m=np.array([-3,1,5])
s=np.array([ss,ss,ss])
xx=np.linspace(-10,10,1001)
res = np.array([cm.multi_gaussian(x,m=m,s=s) for x in xx])

img=np.repeat(np.repeat(np.array([[m[1],m[0]],[m[0],m[2]]]),N,axis=0),N,axis=1)
seg=np.zeros(img.shape)
fimg = flt.gaussian(img,sigma=1,preserve_range=True)
for idx in range(len(m)):

seg[img==m[idx]]=idx

nm = fimg+np.random.normal(loc=0,scale=ss,size=img.shape)

cmap = cm.conf_map(nm,seg,m,s)

fig,ax=plt.subplots(1,3,figsize=(15,5))
ax=ax.ravel()
ax[0].imshow(seg,cmap='gray')
ax[0].set_title('Ground truth/segmentation')
ax[1].imshow(fimg,cmap='gray')
ax[1].set_title('Smooth image')
ax[2].imshow(nm,cmap='gray')
ax[2].set_title('Noisy image');
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The confidence maps for the segmenation

Here, we cheat by using the original shart image as segmented image

seg=np.zeros(img.shape)
fimg = flt.gaussian(img,sigma=1,preserve_range=True)
for idx in range(len(m)):

seg[img==m[idx]]=idx

fig,ax=plt.subplots(2,4,figsize=(15,8))

ax=ax.ravel()
ax[0].imshow(nm,cmap='gray')
ax[0].set_title('Noisy image')

for idx in range(3):
cmap = cm.conf_map(nm,seg,m,s,c=idx)
ax[idx+1].imshow(cmap,clim=[0,1])
ax[idx+1].set_title('Confidence class {}'.format(idx))

ax[4].hist(nm.ravel(),bins=40);
ax[5].axis('off')
# ax[4].plot(xx,res);
# ax[4].set_title('Normalized class distributions')

cmap = cm.conf_map(nm,seg,m,s)
ax[6].imshow(cmap,clim=[0,1])
ax[6].set_title('Confidence map')
xx,w = cm.conf_plot(m,s)
for idx in range(len(m)) :

ax[7].plot(xx,w[idx]/np.sum(w,axis=0), label="C {}".format(idx));

ax[7].legend()
ax[7].set_title('Confidences');
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0.4.13 When does it matter?

High SNR images

Edges have lowest confidence; most impact for
• Perimeter
• Turtosity
• Network connectivity
• Volumes of small items

Low SNR image

Low confidence on most pixels!
• All high-SNR issues
• Porosity
• Volumes
• Labeling

0.5 Statistical experiments - Simple Model

It often convenient to start with a simplified models for your experiments where most uncertainties are reduced. In
particular here in this lecture we chose a simple model for the demonstration
Since most of the experiments in science are usually

• specific,
• noisy,
• and often very complicated

and are not usually good teaching examples.
We go for a simple model…

0.5.1 Magic / Biased Coin

Our model is the task to flip a coin and determine if it is a fair or loaded. The coin has two outcomes
• head
• or tail

You buy a magic coin at a shop.
How many times do you need to flip it to prove it is not fair?
Next step is to describe an experiment strategy. Some examples are:

• If I flip it 10 times and another person flips it 10 times. Is that the same as 20 flips?
• If I flip it 10 times and then multiply the results by 10. Is that the same as 100 flips?
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As you already may have guessed, these are not the best assumtions, in particular not the second one.
A different question is about collections of random variables:
What if

• I buy 10 coins and want to know which ones are fair, what do I do?

Fig. 1: Tossing a coin is a simple random process.

0.5.2 Experiment: Magic / Weighted Coin

1. Each coin represents a stochastic variable 𝒳 and each flip represents an observation 𝒳𝑖.
2. The act of performing a coin flip ℱ is an observation 𝒳𝑖 = ℱ(𝒳)

We normally assume:
1. A fair coin has an expected value of 𝐸(𝒳) = 1

2 :
• 50% Heads,
• 50% Tails

2. An unbiased flip(er) means each flip is independent of the others $𝑃(ℱ1(𝒳)⋅ℱ2(𝒳)) = 𝑃(ℱ1(𝒳))⋅𝑃 (ℱ2(𝒳))$
• the expected value of the flip is the same as that of the coin $𝐸 (∏∞

𝑖=0 ℱ𝑖(𝒳)) = 𝐸(𝒳)$

0.5.3 Simple Model to Reality

Coin Flip

1. Each flip gives us a small piece of information about
• the coin
• and the flipper

1. More flips provides more information
• Random / Stochastic variations in coin and flipper cancel out
• Systematic variations accumulate

Real experiment

1. Each measurement tells us about:
• our sample,
• our instrument,
• and our analysis

2. More measurements provide more information:
• Random / Stochastic variations in sample, instrument, and analysis cancel out
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• Normally, the analysis has very little to no stochastic variation
• Systematic variations accumulate

This is also the reason why we want many repeated observations in an experiment. Repetitions are however expensive,
they require time to perform the experiment and more material for the specimens. Therefore, a pragmatic choice must
be made that balances the cost versus a reasonable amount of observations.

0.6 A more complicated model

Coin flips are very simple and probably difficult to match to another experiment.
A very popular dataset for learning about such values beyond ‘coin-flips’ is called the Iris dataset.
It covers:

• a number of measurements
• from different plants
• and the corresponding species.

0.6.1 Let’s load the Iris Dataset

Fisher, The Use of Multiple Measurements in Taxonomic Problems, 1936
The data set has information about dimensions of the flower anatomy for each of the three species. We load the data
which is provided as a python dictionary and prepare a data frame for the table. You will get a more detailed introduction
to pandas data frames later in this lecture.

data = load_iris()
iris_df = pd.DataFrame(data['data'], columns=data['feature_names'])
iris_df['target'] = data['target_names'][data['target']]
iris_df.sample(5)

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \
148 6.2 3.4 5.4 2.3
82 5.8 2.7 3.9 1.2
119 6.0 2.2 5.0 1.5
146 6.3 2.5 5.0 1.9
120 6.9 3.2 5.7 2.3

target
148 virginica
82 versicolor
119 virginica
146 virginica
120 virginica
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0.6.2 A first inspection of the data

We use a pair plot to inspect the table. Each target species is assigned a color to allow conclusions regarding clusters.

p=sns.pairplot(iris_df, hue='target');
plt.gcf().set_size_inches(9, 6)

In the plot, we clearly see that one species (setosa) in general has other flower leaf dimensions than the other two.

0.6.3 Comparing Groups: Intraclass Correlation Coefficient

The intraclass correlation coefficient basically looking at
• how similar objects within a group are
• compared to the similarity between groups
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Group similarity

How well are groups separated in a study
• Low group similarity - overlapping histograms, harder to separate
• High group similarity - separated histograms, easier to separate

Sepal width

Sepals are the green leaves of the flower bud. In this swarm plot we look at the width of the sepals and see that the
variance of each class is about the same and also the the average width doesn’t vary much. Under such conditions it is
hard to separate the groups from each other and we are talking about a low group similarity.

fig,(ax1,ax2) = plt.subplots(1,2,figsize=(15,5))
sns.swarmplot(data=iris_df, ax = ax1,

x='target', y='sepal width (cm)');ax1.set_title('Low Group Similarity
↪');

ax2.imshow(plt.imread('figures/FlowerAnatomy.png')); ax2.axis('off');

Petal length

Petals are the colourful and beautiful leaves of the flower. In this swarm plot of the petal length we see that the petals are
more clustered and the averages are well separated from each other. This is a case we know is easy to separate the groups
and we are talkning about data with a high group similarity.

fig,(ax1,ax2) = plt.subplots(1,2,figsize=(15,5))
g = sns.swarmplot(data=iris_df, ax=ax1,

x='target', y='petal length (cm)',size=4);g.set_title('High Group␣
↪Similarity');

ax2.imshow(plt.imread('figures/FlowerAnatomy.png')); ax2.axis('off');
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0.6.4 Making quantitative statements

Intraclass Correlation Coefficient Definition

𝐼𝐶𝐶 = 𝑆2
𝐴

𝑆2
𝐴 + 𝑆2

𝑊
where

• The variance among groups or classes $𝑆2
𝐴 = s[E[𝑥𝑔𝑟𝑜𝑢𝑝]]2$

– Estimate with the standard deviations of the mean values for each group
• The variance within groups or classes $𝑆2

𝑊 = E[s[𝑥𝑔𝑟𝑜𝑢𝑝]2]$
– Estimate with the average of standard deviations for each group

Interpretation $𝐼𝐶𝐶 = {1 means 100 percent of the variance is between classes
0 means 0 percent of the variance is between classes

$

Intraclass Correlation Coefficient: Values

𝐼𝐶𝐶 = 𝑆2
𝐴

𝑆2
𝐴 + 𝑆2

𝑊
When compute the ICC for sepal width and petal length, we see that the ICC confirms our first qualitative assessment
about the group similiarity.

def icc_calc(value_name, group_name, data_df):
data_agg = data_df.groupby(group_name).agg({value_name: ['mean', 'var']}).reset_

↪index()
data_agg.columns = data_agg.columns.get_level_values(1)
S_w = data_agg['var'].mean()
S_a = data_agg['mean'].var()
print('{0}: S_w={1:0.02f}, S_a={2:0.2f}'.format(value_name,S_w,S_a))
return S_a/(S_a+S_w)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))

(continues on next page)
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(continued from previous page)

sns.swarmplot(data=iris_df, ax=ax1,
x='target', y='sepal width (cm)',size=3)

ax1.set_title('Low Group Similarity\nICC:{:2.1%}'.format(icc_calc('sepal width (cm)',
↪'target', iris_df)));

sns.swarmplot(data=iris_df,ax=ax2,
x='target', y='petal length (cm)',size=3)

ax2.set_title('High Group Similarity\nICC:{:2.1%}'.format(icc_calc('petal length (cm)
↪', 'target', iris_df)));

sepal width (cm): S_w=0.12, S_a=0.11
petal length (cm): S_w=0.19, S_a=4.37

0.7 Comparing Groups

Once the reproducibility has been measured, it is possible to compare groups.
The idea is to make a test to assess the likelihood that two groups are the same given the data

1. List assumptions
2. Establish a null hypothesis ℋ0

• Usually that both groups are the same
3. Calculate the probability of the observations given the truth of the null hypothesis

• Requires knowledge of probability distribution of the data
• Modeling can be exceptionally complicated
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0.7.1 Outcomes for decision making

With error probabilites:
• 𝛼 - probability of Type I errors / significance level
• 𝛽 - probability of Type II errors

From Privitera 2017

0.7.2 Loaded Coin example

We have 1 coin from a magic shop. Our assumptions are:
• we flip and observe flips of coins accurately and independently
• the coin is invariant and always has the same expected value

Testing
• Our null hypothesis (ℋ0): the coin is unbiased 𝐸(𝒳) = 0.5
• we can calculate the likelihood of a given observation given the number of flips (p-value)

How good is good enough?

Set of possible results

Pr
ob
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ty
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en
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ty

Observed
data point

More likely observation
 

Very un-likely
observations

 

P-value

Very un-likely
observations

 

Fig. 1: Explaining p-value with the normal distribution.
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0.7.3 Comparing Groups: Student’s T Distribution

• Since we do not usually know our distribution very wellor
• have enough samples to create a sufficient probability model

Student T Distribution

We assume the distribution of our stochastic variable is normal (Gaussian) and the t-distribution provides an estimate for
the mean of the underlying distribution based on few observations.

• We estimate the likelihood of our observed values assuming they are coming from random observations of a normal
process

Student T-Test

Incorporates this distribution and provides an easymethod for assessing the likelihood that the two given set of observations
are coming from the same underlying process (null hypothesis, ℋ0)

• Assume unbiased observations
• Assume normal distribution

0.8 Multiple Testing Bias

Back to the magic coin, let’s assume we are trying to publish a paper,
• we heard a p-value of < 0.05 (5%) was good enough.
• Null-hypothesis (ℋ0): the coin is fair
• That means if we get 5 heads we are good!

0.8.1 Probability with increasing number of tosses

𝑃 = ∏
𝑖

𝑃(ℱ𝑖(𝒳))

import pandas as pd
from scipy.stats import ttest_ind
from IPython.display import display
all_heads_df = pd.DataFrame({'n_flips': [1, 4, 5]})
all_heads_df['Probability of # Heads'] = all_heads_df['n_flips'].map(

lambda x: '{:2.1%}'.format(0.5**x))
display(all_heads_df)

n_flips Probability of # Heads
0 1 50.0%
1 4 6.2%
2 5 3.1%
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0.8.2 Probability with many experiments

Let N friends make 5 tosses…

𝑃 =
Get 5 heads

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1 − ( 1 − 0.5𝑁𝑇𝑜𝑠𝑠𝑒𝑠⏟⏟⏟⏟⏟
Not getting 5 heads

)𝑁𝐹𝑟𝑖𝑒𝑛𝑑𝑠

friends_heads_df = pd.DataFrame({'n_friends': [1, 10, 20, 40, 80]})
friends_heads_df['Probability of 5 Heads'] = friends_heads_df['n_friends'].map(

lambda n_friends: '{:2.1%}'.format((1-(1-0.5**5)**n_friends)))
display(friends_heads_df)

n_friends Probability of 5 Heads
0 1 3.1%
1 10 27.2%
2 20 47.0%
3 40 71.9%
4 80 92.1%

Clearly this is not the case, otherwise we could keep flipping coins or ask all of our friends to flip until we got 5 heads
and publish
The p-value is only meaningful when the experiment matches what we did.

• We didn’t say the chance of getting 5 heads ever was < 5%
• We said is if we have

– exactly 5 observations
– and all of them are heads
– the likelihood that a fair coin produced that result is <5%

There are many methods to correct.
Most just involve scaling 𝑝:

• The likelihood of a sequence of 5 heads in a row if you perform 10 flips is 5x higher.

0.8.3 Multiple Testing Bias: Experiments

This is very bad news for us. We have the ability to quantify all sorts of interesting metrics
• cell distance to other cells
• cell oblateness
• cell distribution oblateness

So, lets throw them all into a magical statistics algorithm and push the publish button
With our p value of less than 0.05 and a study with 10 samples in each group, how does increasing the number of variables
affect our result
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Let’s look at multiple observations

We make five random variables with ten observations of a uniform distribution in the interval ±1

𝑣𝑎𝑟_𝑖 ∈ 𝒰(−1, 1)

and make two groups ‘1’ and ‘2’

import pandas as pd
import numpy as np
pd.set_option('display.precision', 2)
np.random.seed(2017)

def random_data_maker(rows, cols):
data_df = pd.DataFrame(

np.random.uniform(-1, 1, size=(rows, cols)),
columns=['Var_{:02d}'.format(c_col) for c_col in range(cols)])

data_df['Group'] = [1]*(rows-rows//2)+[2]*(rows//2)
return data_df

rand_df = random_data_maker(10, 5)

rand_df

Var_00 Var_01 Var_02 Var_03 Var_04 Group
0 -0.96 0.53 -0.10 -0.76 0.86 1
1 0.30 -0.72 -0.54 -0.55 -0.48 1
2 -0.77 0.26 -0.23 -0.37 0.26 1
3 -0.41 0.89 -0.70 -0.85 0.41 1
4 -0.86 -0.39 -0.34 -0.38 -0.12 1
5 0.53 -0.05 -0.99 0.40 0.26 2
6 -0.94 -0.83 0.41 -0.09 0.41 2
7 0.86 -0.18 -0.92 0.24 -0.28 2
8 0.84 0.83 -0.46 -0.39 -0.97 2
9 0.08 0.34 -0.09 0.07 0.82 2

Compute p-values for the table

The Student-t test is computed using the python function

scipy.stats import ttest_ind

ttest_ind(var_i[Group==1],var_i[Group==2])

This is a two-sided test for the null hypothesis that two independent samples have identical average (expected) values.
This test assumes that the populations have identical variances by default.
Here, we compute the p-values for the table we just created. The variables with p-values less than 0.05 are marked with
yellow.
In the following example we compare the two groups of each random variable to determine if they are significantly
different.
Essentially 𝑡𝑡𝑒𝑠𝑡_𝑖𝑛𝑑(𝑣𝑎𝑟𝑖[𝐺𝑟𝑜𝑢𝑝 == 1], 𝑣𝑎𝑟𝑖[𝐺𝑟𝑜𝑢𝑝 == 2])
We expect the two parts to be the same as all values are generated using the same random generator.
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from scipy.stats import ttest_ind

def show_significant(in_df, cut_off=0.05):
return in_df.sort_values('P-Value').style.apply(lambda x: ['background-color:␣

↪yellow' if v<cut_off else '' for v in x])

def all_ttest(in_df):
return pd.DataFrame(

{'P-Value': {c_col: ttest_ind(
a=in_df[in_df['Group'] == 1][c_col],
b=in_df[in_df['Group'] == 2][c_col]

).pvalue
for c_col in
in_df.columns if 'Group' not in c_col}})

show_significant(all_ttest(rand_df))

<pandas.io.formats.style.Styler at 0x177c0be20>

A larger table

Now, let’s create a larger table with 150 rows and 20 independent variables.

np.random.seed(2019)
show_significant(all_ttest(random_data_maker(150, 20)))

<pandas.io.formats.style.Styler at 0x15397dac0>

Repeating the measurements

We saw with the coin tossing that the probability to detect the event we are looking for increased with the number of
repeated independent measurements (friends tossing coins).
Let’s see what happens when we do the the same with our table of experiments. First, we must generate the data. We
will try using tables with 1 to 150 variable and 100 observations. Each measurement will be repeated 50 times.

import seaborn as sns
from tqdm import notebook # progressbar
out_list = []
for n_vars in notebook.tqdm(range(1, 150, 10)):

for _ in range(50):
p_values = all_ttest(random_data_maker(100, n_vars)).values
out_list += [{'Variables in Study': n_vars,

'Significant Variables Found': np.sum(p_values < 0.05),
'raw_values': p_values}]

var_found_df = pd.DataFrame(out_list)

0%| | 0/15 [00:00<?, ?it/s]
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fig,ax = plt.subplots(1,1,figsize=(12,4))
sns.stripplot(data=var_found_df, x='Variables in Study', y='Significant Variables␣

↪Found');

Visualize the results differently

The strip plot we just used gets cluttered when we have too many observations. A different way to show the results is to
use a boxplot.

plt.figure(figsize=(12,6))
sns.boxplot(data=var_found_df,

x='Variables in Study', y='Significant Variables Found');
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0.8.4 Multiple Testing Bias: Correction

We saw that increasing the number of tests also increases the probability of detection. This is missleading and needs to
be corrected.
Using the simple correction factor (number of tests performed) as proposed by Bonferroni, we can make the significant
findings constant again. $𝑝cutoff = 0.05

Number of Tests$

This comes from the familywise error $ ̄𝛼 = 1 − (1 − 𝛼per comparison)
𝑚
$

where 𝑚 is the number of hypotheses tested. Then, with Boole’s inequality we have

̄𝛼 ≤ 𝑚 ⋅ 𝛼per comparison

Which leads to the Boniferroni correction.

fig,ax=plt.subplots(1,figsize=(5,4))
var_found_df['Corrected Significant Count'] = var_found_df['raw_values'].map(lambda p_

↪values:
np.sum(p_

↪values<0.05/len(p_values)))
var_found_df.groupby('Variables in Study').agg({'Significant Variables Found':'mean',

↪'Corrected Significant Count':'mean'}).plot(ax=ax)
plt.title('Effect of significance correction');
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It this correction factor sufficient?

So no harm done there we just add this correction factor right?
Well, what if we have exactly one variable with shift of 1.0 standard deviations from the other.
In a dataset where we check 𝑛 variables?

table_df = random_data_maker(50, 10)
really_different_var = np.concatenate([

np.random.normal(loc=0, scale=1.0, size=(table_df.shape[0]//2)),
np.random.normal(loc=1, scale=1.0, size=(table_df.shape[0]//2))

])
table_df['Really Different Var'] = really_different_var
fig, ax1 = plt.subplots(1, 1, figsize=(10, 5))
ax1.hist(table_df.query('Group==1')['Really Different Var'], np.linspace(-5, 5, 20),␣

↪label='Group 1', alpha=0.5);
ax1.vlines(0,ymin=0,ymax=8.5,label='$\overline{x}_1=0$')
ax1.hist(table_df.query('Group==2')['Really Different Var'], np.linspace(-5, 5, 20),␣

↪label='Group 2', alpha=0.5);
ax1.vlines(1,ymin=0,ymax=8.5,color='blue',label='$\overline{x}_2=1$')
ax1.legend();

Run many tests

We run 200 tests with two variables with 𝒩(0, 1) and 𝒩(1, 1) and compute the p-values for each test.

out_p_value = []
for _ in range(200):

out_p_value += [ttest_ind(np.random.normal(loc=0, scale=1.0, size=(table_df.
↪shape[0]//2)),

np.random.normal(loc=1, scale=1.0, size=(table_df.shape[0]//2))).pvalue]

When we look at the histograms of p-values scale by the number of variables in the test we see that there is a greater
probability to accept the null-hypothesis.
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fig, m_axs = plt.subplots(2, 3, figsize=(15, 8))
for c_ax, var_count in zip(m_axs.flatten(), np.linspace(1, 140, 9).astype(int)):

c_ax.hist(np.clip(np.array(out_p_value)*var_count, 0.01, 0.3), np.linspace(0.01,␣
↪0.3, 30))

c_ax.set_ylim(0, 100)
c_ax.set_title('p-value after multiple correction\n for {} variables'.format(var_

↪count))

m_axs[0,1].annotate("Collected tail counts", xy=(0.28, 25), xytext=(0.15, 40),␣
↪arrowprops=dict(arrowstyle="->",color="black"),fontsize=14);

The likelihood to find a different variable

The scaling by the number of variables means that we are less likely to reject the null hypothesis. So, what is the likelihood?
We count the number of the p-values less than 0.05 to compute the likelihood of detecting a really different variable.

var_find_df = pd.DataFrame({'Variables': np.linspace(1, 100, 30).astype(int)})
var_find_df['Likelihood of Detecting Really Different Variable'] = var_find_df[

↪'Variables'].map(
lambda var_count: np.mean(np.array(out_p_value)*var_count<0.05)

)
fig, ax1 = plt.subplots(1, 1, figsize=(15, 5))
var_find_df.plot('Variables', 'Likelihood of Detecting Really Different Variable',␣

↪ax=ax1)
ax1.set_ylabel('% Likelihood');
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Here, we see that the likelihood is very low for many varibles. A reason in that we are working on a limited number of
samples and split these on an incresing number of varibles.

0.9 Sensitivity to anlysis parameters

We have a workflow to analyze shape and thickness of items in an image:

from graphviz import Digraph

dot = Digraph()

dot.node('Raw images',color='limegreen'), dot.node('Gaussian filter', color=
↪'lightblue')

dot.node('sigma=0.5', color='gray',shape='box'), dot.node('3x3 Neighbors', color='gray
↪',shape='box')

dot.node('Threshold', color='lightblue'), dot.node('100', color='gray',shape=
↪'box')

dot.node('Thickness analysis',color='hotpink'), dot.node('Shape analysis',color=
↪'hotpink')

dot.node('Input',color='limegreen'), dot.node('Functions', color='lightblue')
dot.node('Parameters', color='gray',shape='box'),dot.node('Output',color='hotpink')

dot.edge('Raw images', 'Gaussian filter'), dot.edge('sigma=0.5', 'Gaussian filter')
dot.edge('3x3 Neighbors', 'Gaussian filter'), dot.edge('Gaussian filter','Threshold')
dot.edge('Threshold', 'Thickness analysis'), dot.edge('Threshold', 'Shape analysis')
dot.edge('100','Threshold')
dot

<graphviz.graphs.Digraph at 0x29ab26760>

Three parameters can be controlled:
• Gaussian filter: 𝜎 and neighborhood size
• Threshold level
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0.9.1 Parameter Sweep

The way we do this is usually a parameter sweep which means
• taking one (or more) parameters
• and varying them between the reasonable bounds (judged qualitatively).

The outcome of a parameter sweep can look like in the figure below.

Fig. 1: Volume measurements for different thresholds

We can see that the volume is generally decreasing when the threshold increases. Still, it seems that the volume is not
that sensitive to the choice of threshold. Variations in the order of about 50 voxels. That would correspond to a radius
change from 6.3 to 6.7 for the equivalent spheres. On the other hand, this minor change could be the difference between
separated or touching objects.

0.9.2 Is it always the same?

The jittered scatter plot in fig 1 makes it hard to see the distribution of the measurements. A violin plot as in the figure
below is a histogram view of the data that allows stacking for different observations.
Now, what happens if we look at a different item metric like the orientation of the items.
Here, we see a similar trend as we saw with the volume.
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Fig. 2: A violin plot of the volume data.

Fig. 3: Scatter plot of the orientation of the items.

0.9. Sensitivity to anlysis parameters 41



Quantitative Big Imaging - Statistics

0.9.3 Sensitivity

Control system theory

Sensitivity is defined as
• the change in the value of an output
• against the change in the input.

𝑆 = |ΔMetric|
|ΔParameter|

Image processing

Such a strict definition is not particularly useful for image processing since
• a threshold has a unit of intensity and
• a metric might be volume which has 𝑚3→ the sensitivity becomes volume per intensity!

Practical Sensitivity

Amore common approach is to estimate the variation in this parameter between images or within a single image (automatic
threshold methods can be useful for this) and define the sensitivity based on this variation.
It is also common to normalize it with the mean value so the result is a percentage.

𝑆 = 𝑚𝑎𝑥(Metric) − 𝑚𝑖𝑛(Metric)
𝑎𝑣𝑔(Metric)

0.9.4 Sensitivity: Real Measurements

In this graph it is magnitude of the slope. The steeper the slope the more the metric changes given a small change in the
parameter

Fig. 4: Sensitivity measurement to measure how sensitive the object count is to the choice of the threshold.
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0.9.5 Sensitivity: compare more than one variable

Comparing Different Variables we see that
• the best (lowest) value for the count sensitivity
• is the highest for the volume and anisotropy.

Fig. 5: Sensitivity comparison for different metrics (Anisotropy, Count, Volume) to the choice of the threshold.

A contradiction?

We see in Fig <number> fig_comparesensitivity that two parameters with relatively low sensitivity vari-
ations behave the same while the last one (count) fluctuates a lot with the threshold choice. Which one we use to guide
our segmentation ultimately depends on the objective of the investigation.

0.9.6 Reproducibility

A very broad topic with plenty of sub-areas and deeper meanings. We mean two things by reproducibility

Measurement

Everything for analysis + taking a measurement several times (noise and exact alignment vary each time) does not change
the statistics significantly

• No sensitivity to mounting or rotation
• No sensitivity to noise
• No dependence on exact illumination
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Analysis

The process of going from images to numbers is detailed in a clear manner that anyone, anywhere could follow and get
the exact (within some tolerance) same numbers from your samples

• No platform dependence
• No proprietary or “in house” algorithms
• No manual clicking, tweaking, or copying
• A single script to go from image to result

Doing analyses in a disciplined manner

• fixed, well-defined, steps
• easy to regenerate results
• no magic
• documentation

Advantages of a diciplined workflow

Having everything automated

• 100 samples is as easy as 1 sample
• Some intitial extra effort pays off

Being able to adapt and reuse analyses

• one really well working script
• modify parameters to address e.g.

– different types of cells
– different regions

0.9.7 Reproducible Analysis

Since we will need to perform the same analysis many times to understand how reproducible it is.
• Notebooks are good to develop and document analysis workflow.
• The basis for reproducible analysis are scripts and macros.
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With python scripts

# #!/$PYTHONPATH/python
import sys
from myAnalysis import analysisScript # some analysis script you implemented

imageFile = sys.argv[0] # File name from command line

threshold = 130
analysisScript(fname=imageFile, threshold = threshold)

or Matlab, ImageJ, or R

IMAGEFILE=$1
THRESHOLD=130
matlab -r "inImage=$IMAGEFILE; threshImage=inImage>$THRESHOLD; analysisScript;"

• or java -jar ij.jar -macro TestMacro.ijm blobs.tif

• or Rscript -e "library(plyr);..."

0.10 Predicting and Validating - main categories

There are plenty machine-learning techniques available. Each one dedicated to a specific type of problem and data
collection.

Fig. 1: A cheat sheet to identify the best machine learning technique for your problem.

Fig <number> fig_mlcheatsheet provides a guide to find the correct method for your problem.
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A common task independent of which method you chose, it that you have to validate your processing workflow. This is
important to be able to tell when and to what degree you can trust your workflow.
Borrowed from http://peekaboo-vision.blogspot.ch/2013/01/machine-learning-cheat-sheet-for-scikit.html

0.10.1 Overview

Basically all of these are ultimately functions which map inputs to outputs.

The input could be

• an image
• a point
• a feature vector
• or a multidimensional tensor

The output is

• a value (regression)
• a classification (classification)
• a group (clustering)
• a vector / matrix / tensor with fewer degrees of input / less noise as the original data (dimensionality reduction)

Overfitting

The most serious problem with machine learning and such approachs is overfitting your model to your data. Particularly as
models get increasingly complex (random forest, neural networks, deep learning, …), it becomes more and more difficult
to apply common sense or even understand exactly what a model is doing and why a given answer is produced.
Training a model like:

magic_classifier = {}
# training
magic_classifier['Dog'] = 'Animal'
magic_classifier['Bob'] = 'Person'
magic_classifier['Fish'] = 'Animal'

Now use this classifier, on the training data it works really well

magic_classifier['Dog'] == 'Animal' # true, 1/1 so far!
magic_classifier['Bob'] == 'Person' # true, 2/2 still perfect!
magic_classifier['Fish'] == 'Animal' # true, 3/3, wow!

On new data it doesn’t work at all, it doesn’t even execute.

magic_classifier['Octopus'] == 'Animal' # exception?! but it was working so well
magic_classifier['Dan'] == 'Person' # exception?!

This example appeared to be a perfect trainer for mapping names to animals or people, but it just memorized the inputs
and reproduced them at the output and so didn’t actually learn anything, it just copied.
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0.10.2 Validation

Relevant for each of the categories, but applied in a slightly different way depending on the group.
The idea is to divide the dataset into groups called

• ideally training,
• validation,
• and testing.

The analysis is then
• developed on training
• iteratively validated on validation
• ultimately tested on testing

0.11 Presenting the results - bringing out the message

In the end you will want to present your results

Presentation Publication Web pageDiscussions

Fig. 1: Different ways to present your data.

0.11.1 Visualization

One of the biggest problems with big sciences is trying to visualize a lot of heterogeneous data.
• Tables are difficult to interpret
• 3D Visualizations are very difficult to compare visually
• Contradictory necessity of simple single value results and all of the data to look for trends and find problems

## Purpose of the visualization
You visualize your data for different reasons:

1. Understanding and exploration
• Small and known audience (you and colleagues)
• High degree of understanding of specific topic.
1. Presenting your results
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• Wider and sometimes unknown audience (reader of paper, person listening to presentation)
• At best general understanding of the topic.

from Knaflic 2015

Fig. 2: The level of detail in a presentation depends on the medium it is presented Knaflic 2015.

0.11.2 Bad Graphs

There are too many graphs which say:
• my data is very complicated

• I know how to use __ toolbox in Python/Matlab/R/Mathematica

• Most programs by default make poor plots
• Good visualizations takes time to produce

xkcd
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Fig. 3: This cartoon from XKCD highlights a problem with the access to software making it too easy to produce a graph
or illustration. Unfortunately, without any thoughts about information content and artistic or illustration rules.
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Some bad examples

There are plenty examples on how you shouldn’t present your data. The problem is in general that there is way too much
information that needs to be predigestend before it is ready to any audience.

Fig. 4: Four examples of how not to present your data.

0.11.3 How to improve - Key Ideas

There is a need to consciously prepare your figures to bring your message to the audience in an understandable way. The
first step is to ask yourself the following questions.
What is my message?
Is it clearly communicated?
Is it really necessary?

• Does every line / color serve a purpose?
• Pretend ink is very expensive

Keep this in mind every time you create a figure and you will notice that after while you will have a tool set that makes it
easier and faster to produce well thought figures that clearly brings out you message to your audience.
Personally, I always write scripts to produce each plot of a publication. This makes it easier to revise the manuscript in a
reproducible and efficient manner. The first implementation may take longer, but the revision is done in no time.
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Some literature

If you want to read more about how to work with data visualization. I can recommend these:
• Knaflic, Storytelling with Data: A Data Visualization Guide for Business Professionals, 2015
• Few, Should data visualization always be beautiful?, 2012

Simple Rules

1. Never use 3D graphics when it can be avoided (unless you want to be deliberately misleading)

2. Pie charts can also be hard to interpret
3. Background color should almost always be white (not light gray)
4. Use color palettes adapted to human visual sensitivity
5. Use colors and transparency smart

0.11.4 Grammar of Graphics

What is a grammar?

• Set of rules for constructing and validating a sentence
• Specifies the relationship and order between the words constituting the sentence

How does grammar apply to graphics?

If we develop a consistent way of
• expressing graphics (sentences)
• in terms of elements (words) we can compose and decompose graphics easily

The most important modern work in graphical grammars is“The Grammar of Graphics” by Wilkinson, Anand, and
Grossman (2005).
This work built on earlier work by Bertin (1983) and proposed a grammar that can be used to describe and construct a
wide range of statistical graphics.
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Grammar Explained

Normally we think of plots in terms of some sort of data which is fed into a plot command that produces a picture
• In Excel you select a range and plot-type and click “Make”
• In Matlab you run plot(xdata,ydata,color/shape)
1. These produces entire graphics (sentences) or at least phrases in one go and thus abstract away from the idea of

grammar.
2. If you spoke by finding entire sentences in a book it would be very ineffective, it is much better to build up word

by word

Grammar

Separate the graph into its component parts

{𝑣𝑎𝑟1 → 𝑥
𝑣𝑎𝑟2 → 𝑦

Construct graphics by focusing on each portion independently.

Figure decorations

Besides the data you also need to provide annotating items to the visualization.
It may seem unnescessary to list these annotations, but it happens too often that they are missing. This leaves the observers
wondering about what they see in the figure. It is true that it takes a little more time to add annotation to your figure.
Sometimes, you may think that the plot is only for your own understanding and you don’t need to waste the time onmaking
it complete. Still, in the next moment it finds its way to the presentation and then all of a sudden it is offical…
Annotations are fundamental features of figures and available in any plotting library. In some cases you have to look a
little longer to find them or write a little more code to use them, but they are there.

Plots

• Curve legend - telling what each curve represents.
• Axis labels - tellning what information you see on each axis.
• Figure title - if you use multiples plots in the same figure.

Images

• Color bar - to tell how the colors are mapped to the values.
• Scale bar - to tell the size of the object in the image.
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Color maps revisited

Choosing the right color is a science.
Crameri, F., et al. (2020)
The choice depends on the type of data you want to present and how humans percieve different colors. Some combinations
make it easier to highlight relevant features in the images. Still, you have to be cautious not put too much a priori
information into the color map.
Visualization toolboxes provide a great collection of colormaps as we have seen several times already in this course. There
are however cases when you have to define your own color map. An example is the colormap we created last week to be
able to identify each item in a watershed segmented image.

0.11.5 What is my message?

Plots to “show the results” or “get a feeling” are usually not good

from plotnine import *
from plotnine.data import *
import pandas as pd
import numpy as np
# Some data
xd = np.random.rand(80)
yd = xd + np.random.rand(80)
zd = np.random.rand(80)

df = pd.DataFrame(dict(x=xd,y=yd,z=zd))
ggplot(df,aes(x='x',y='y')) + geom_point()
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Fig. 5: Crameri et al. developed this decision flow chart to help you decide which type of color map is best suited for
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<ggplot: (704751924)>

Focus on a single, simple message

“X is a little bit correlated with Y”

(ggplot(df,aes(x='x',y='y'))
+ geom_point()
+ geom_smooth(method="lm")

# + coord_equal()
+ labs(title="X is weakly correlated with Y")
+ theme_bw(12) )
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<ggplot: (704868605)>

Does my graphic communicate it clearly?

Too much data makes it very difficult to derive a clear message

xd = np.random.rand(5000)
yd = (xd-0.5)*np.random.rand(5000)

df = pd.DataFrame(dict(x=xd,y=yd))
(ggplot(df,aes(x='x',y='y'))
# + geom_point()
+ geom_point( alpha = 0.1 )
+ coord_equal()
+ theme_bw(20))
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<ggplot: (705313931)>

We have earlier used transparency to better visualize dense scatter plots. You can see the effect by setting the alpha
parameter to geom_point. Using transparency is a qualitative way of showing higher density in the data.

Reduce the data

Filter and reduce information until it is extremely simple
In this plot we create a density count view of the data by downsampling the grid and count the amount of points in each
bin. It is related to a histogram but it count in space instead of in the intensity levels.

(ggplot(df,aes(x='x',y='y'))
+ stat_bin_2d(bins=40)
+ geom_smooth(method="lm",color='red')
+ coord_equal()
+ theme_bw(20)
+ guides(color='F')

)
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<ggplot: (705341672)>

Using this kind of plot allows us to measure how many points there are in each bin and thus we are now going towards a
quantitative plot. The colorbar on the side helps us to interpret the colors.

Reduce even further

(ggplot(df,aes(x='x',y='y'))
+ geom_density_2d(aes(x='x', y='y', color='..level..'))
+ geom_smooth(method="lm")
+ coord_equal()
+ labs(color="Type")
+ theme_bw(15)

)
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<ggplot: (705480921)>

0.11.6 Common visualization packages for python

• Matplotlib Matplotlib 3.0 Cookbook or ETHZ lib, code examples
• Plotly
• Seaborn
• ggplot R using the ggplot2 library, which is ported to python.

A short summary of these packages can be found here.

0.12 Summary

0.12.1 Uncertainties

• Every measurement has an uncertainty
• Reporting these is important for good science.
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0.12.2 Statistics

• I am not a statistician and is not a statistics course
• If you have questions or concerns

– Both ETHZ and Uni Zurich offer free consultation with real statisticians
– They are rarely bearers of good news - you allways need more data…

• Simulations (even simple ones) are very helpful
• Try and understand the tests you are performing

0.12.3 Visualization

• Visualization is the crowning piece of your investigation - make it count!
• Many toolboxes can be used, choose the one that fits your needs.
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