
Quantitative Big Imaging - Image
enhancement

Anders Kaestner

May 11, 2023

CONTENTS

0.1 Image Enhancement . 1
0.2 Measurements are rarely perfect . 2
0.3 Noise and artifacts . 5
0.4 Basic filtering . 12
0.5 Basic filters . 14
0.6 Frequency space filters . 23
0.7 Scale spaces . 33
0.8 Parameterized scale spaces . 39
0.9 Non-local means . 45
0.10 Enhancing and analyzing orientation . 47
0.11 Verification . 58
0.12 Overview . 63

i

ii

Quantitative Big Imaging - Image enhancement

This is the lecture notes for the 3rd lecture of the Quantitative big imaging class given during the spring semester 2022 at
ETH Zurich, Switzerland.

0.1 Image Enhancement

Quantitative Big Imaging ETHZ: 227-0966-00L

0.1.1 Todays lecture

• Imperfect images and noise
• Filters
• The Fourier transform
• Advanced filters
• Structure tensor
• Evaluation workflows

Literature

Basic filters

Jähne 2005, Digital Image ProcessingJohn C. Russ 2006, The Image Processing Handbook

Orientations

Z. Püspöki, M. Storath, D. Sage, M. Unser 2016Bigün 2006, Vision with Direction
Orientation demonstration

We need some modules

These modules are needed to run the python cells in this lecture.

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib.colors import LogNorm
import skimage as ski
import skimage.filters as flt
import skimage.io as io
from skimage.morphology import disk
import scipy.ndimage as ndimage
from scipy.signal import convolve2d
from scipy.ndimage import gaussian_filter
from matplotlib.patches import ConnectionPatch
from scipy.signal import medfilt

(continues on next page)

0.1. Image Enhancement 1

https://doi.org/10.1007/3-540-27563-0
http://dx.doi.org/10.1201/9780203881095
https://doi.org/10.1007/978-3-319-28549-8_3
https://doi.org/10.1007/b138918
http://bigwww.epfl.ch/demo/ip/demos/orientation/

Quantitative Big Imaging - Image enhancement

(continued from previous page)

mpl.rcParams['figure.dpi'] = 100

0.2 Measurements are rarely perfect

There is no perfect measurement. This is also true for neutron imaging. The ideal image is the sample is distorted for
many reasons. The figure below shows how an image of a sample can look after passing though the acquisition system.
These quailty degradations will have an impact on the analysis of the image data. In some cases, it is possible to correct
for some of these artifacts using classing image processing techniques. There are however also cases that require extra
effort to correct the artifacts.

Fig. 1: Schematic showing the error contributions in an imperfect imaging system.

0.2.1 Factors affecting the image quality

No measurement system is perfect and therefore, you will also not get perfect images of the sample you measured. In
the figure you can see the slice as it would be in a perfect world to the left and what you actually would measure with an
imaging system. Some are of higher quality than others but there are still a collection of factors that have an impact on
the image quality.
The list below provides some factors that affect the quality of the acquired images. Most of them can be handled by
changing the imaging configuration in some sense. It can however be that the sample or process observed put limitiations
on how much the acquisition can be tuned to obtain the perfect image.

• Resolution (Imaging system transfer functions)
• Noise
• Contrast
• Inhomogeneous contrast

2 CONTENTS

Quantitative Big Imaging - Image enhancement

• Artifacts

Resolution

The resolution is primarily determined optical transfer function of the imaging system. The actual resolution is given by
the extents of the sample and how much the detector needs to capture in one image. This gives the field of view and given
the number pixels in the used detector it is possible to calculate the pixel size. The pixel size limits the size of the smallest
feature in the image that can be detected. The scintillator, which is used to convert neutrons into visible light, is chosen
to

1. match the sampling rate given by the pixel size.
2. provide sufficient neutron capture to obtain sufficient light output for a given exposure time.

Noise

An imaging system has many noise sources, each with its own distribution e.g.
1. Neutron statistics - how many neutrons are collected in a pixel. This noise is Poisson distributed.
2. Photon statistics - how many photons are produced by each neutron. This noise is also Poisson distributed.
3. Thermal noise from the electronics which has a Gaussian distribution.
4. Digitation noise from converting the charges collected for the photons into digital numbers that can be transfered

and stored by a computer, this noise has a binominal distribution.
The neutron statistics are mostly dominant in neutron imaging but in some cases it could also be that the photon statistics
play a role.

Contrast

The contrast in the sample is a consequence of
1. how well the sample transmits the chosen radiation type. For neutrons you obtain good contrast from materials

containing hydrogen or lithium while many metals are more transparent.
2. the amount of a specific element or material represented in a unit cell, e.g. a pixel (radiograph) or a voxel (tomog-

raphy).
The objective of many experiments is to quantify the amount of a specific material. This could for example be the amount
of water in a porous medium.
Good contrast between different image features is important if you want to segment them to make conclusions about the
image content. Therefore, the radiation type should be chosen to provide the best contrast between the features.

Inhomogeneous contrast

The contrast in the raw radiograph dependsmuch on the beam profile. These variations are easily corrected by normalizing
the images by an open beam or flat field image.

• Biases introduced by scattering Scattering is the dominant interaction for many materials use in neutron imaging.
Thismeans that neutrons that are not passing straight though the sample are scattered and contribute to a background
cloud of neutrons that build up a bias of neutron that are also detected and contribute to the

0.2. Measurements are rarely perfect 3

Quantitative Big Imaging - Image enhancement

• Biases from beam hardening is a problem that is more present in x-ray imaging and is caused by that fact that the
attenuation coefficient depends on the energy of the radiation. Higher energies have lower attenuation coefficient,
thus will high energies penetrate the thicker samples than lower energies. This can be seen when a polychromatic
beam is used.

Artifacts

Many images suffer from outliers caused by stray rays hitting the detector. Typical artefacts in tomography data are
• Lines, which are caused by outlier spots that only appear in single projections. These spot appear as lines in the
reconstructed images.

• Rings are caused by stuck pixels which have the same value in a projections.

0.2.2 A typical processing chain

Traditionally, the processing of image data can be divided into a series of subtasks that provide the final result.

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

Image
Acquisition Enhancement Segmentation Post processing Evaluation

Fig. 2: Typical steps of an image processing work flow.

• Acquisition The data must obviously be acquired and stored. There are cases when simulated data is used. Then,
the acquisition is replaced by the process to simulate the data.

• Enhancement The raw data is usually not ready to be processed in the form is comes from the acquisition. It usually
has noise and artifacts as we saw on the previous slide. The enhancement step suppresses unwanted information in
the data.

• Segmentation The segmenation identifies different regions based on different features such as intensity distribution
and shape.

• Post processingAfter segmentation, theremay be falsely identified regions. These are removed in a post processing
step.

• Evaluation The last step of the process is to make conclusions based on the image data. It could be modelling
material distrbutions, measuring shapes etc.

Today’s lecture will focus on enhancement

4 CONTENTS

Quantitative Big Imaging - Image enhancement

0.3 Noise and artifacts

Noise is in very general terms for the unwanted information in a signal.
More specifically;we are talking about random contributions that obscure the image information we are interested in.

0.3.1 Noise types

Noise can have many different characteristics. In general, it is driven by a random distribution.
• Spatially uncorrelated noise

With spatially uncorrelated noise each pixel has a random value which is independend of the pixel neighborhood. This is
also the easiest noise type to simulate.

• Event noise
The even noise has a random activation function that triggers the event of each pixel with some probabilty. This noise
type produces spots randomly distributed over the image. The spots may also have a randomw intensity.

• Stuctured noise
The structured noise depends on the values of the pixel neighborhood and is thus spatially correlated. It is mostly driven
by an uncorrelated noise source which is blurred by a weighted combination of the neighborhood.
The figure below shows examples of the three noise types.

plt.figure(figsize=[12,4]);
plt.suptitle('Noise examples')
plt.subplot(1,3,1);plt.imshow(np.random.normal(0,1,[100,100])); plt.title('Gaussian');

↪plt.axis('off');
plt.subplot(1,3,2);plt.imshow(0.90<np.random.uniform(0,1,size=[100,100]),cmap='gray');

↪ plt.title("Salt and pepper"),plt.axis('off');
plt.subplot(1,3,3);plt.imshow(ski.filters.gaussian(np.random.normal(0,1,size=[100,

↪100]),sigma=1),cmap='gray'); plt.title("Structured"),plt.axis('off');
plt.tight_layout()

0.3. Noise and artifacts 5

Quantitative Big Imaging - Image enhancement

Noise models - Gaussian noise

Gaussian noise is the most common random distribution used. All other distributions asymptotically converges towards
the Gaussian distribution thanks to the central limit theorem. The Gaussian noise is an easy distribution to work with when
you derive signal processing models. This is also the reason why it is so popular to use this model also for non-Gaussian
noise.

• Additive
• Easy to model
• Law of large numbers

Distribution function

𝑛(𝑥) = 1√
2𝜋𝜎 exp−(𝑥 − 𝜇

2𝜎)
2

Below you see plots of the Gaussian distribution with different parameters.

from scipy.stats import norm
rv = norm(loc = -1., scale = 1.0);rv1 = norm(loc = 0., scale = 2.0); rv2 = norm(loc =␣

↪2., scale = 3.0)
x = np.arange(-10, 10, .1)
plt.figure(figsize=(5,3))
#plot the pdfs of these normal distributions
plt.plot(x, rv.pdf(x),label='μ=-1, σ=1')
plt.plot(x, rv1.pdf(x),label='μ=0, σ=2')
plt.plot(x, rv2.pdf(x),label='μ=2, σ=3')
plt.legend();

6 CONTENTS

https://en.wikipedia.org/wiki/Central_limit_theorem

Quantitative Big Imaging - Image enhancement

Noise models - Poisson noise

The Poisson noise is the central noise model for event counting processes. It is thus the type of noise you see in imaging
as the detectors in some sense is counting the number of particles arriving at the detector, e.g. photons or neutrons.
This noise distribution changes shape with increasing number of particles; the distribution is clearly asymmetric for few
particles while it takes a Gaussian shape when many particles are counted. It is also multiplicative in contrast to the
Gaussian noise. This is in other words the noise distribution you need to use if you want to model image noise correctly.

• Intensity dependent
• Physically correct for event counting

Distribition function

𝑝(𝑥) = 𝜆𝑘

𝑘! 𝑒
−𝜆𝑥

The plot below show a poisson distribtion for 𝜆=3

from scipy.stats import poisson
mu=3
fig, ax = plt.subplots(1, 1)
x = np.arange(poisson.ppf(0.01, mu), poisson.ppf(0.999, mu))
ax.plot(x, poisson.pmf(x, mu), 'bo', ms=8, label='poisson pmf')
ax.vlines(x, 0, poisson.pmf(x, mu), colors='b', lw=5, alpha=0.5);

0.3. Noise and artifacts 7

Quantitative Big Imaging - Image enhancement

Compare Gaussian and Possion noise

Now, let’s compare relaizations of Gaussian and Poisson noise overlaid on a sine curve. The important thing to observe
is that the noise amplitude is independent of the signal value and constant for the Gaussian noise. For Poisson noise it
is very different. The noise amplitude changes with the signal values. Higher signal strength also produces greater noise
amplitudes.

fig,ax=plt.subplots(2,2,figsize=(12,7))
ax=ax.ravel()

x=np.linspace(0,2*np.pi,2000)
y=1*np.sin(x)+2

idxmax = np.argmax(y)
idxmin = np.argmin(y)

np.random.seed(42)
ng=np.random.normal(0,0.5,size=len(x))
gn=y+ng
ax[0].plot(x,gn,'.',label='Gaussian noise',alpha=0.5)
ax[0].plot(x,y,label='Original',lw=2)
ax[0].set_ylim([-1,5])
ax[0].set_title('Gaussian noise')
stdmin = gn[(idxmin-100):(idxmin+100)].std()
stdmax = gn[(idxmax-100):(idxmax+100)].std()
ax[0].plot([x[idxmin],x[idxmin]],[y[idxmin]+stdmin,y[idxmin]-stdmin],lw=5,c='red',

↪label=r"$\mu \pm \sigma$")
ax[0].plot([x[idxmax],x[idxmax]],[y[idxmax]+stdmax,y[idxmax]-stdmax],lw=5,c='red')
ax[0].legend()
ax[0].axis('off')

pn=np.random.poisson(y*20)/20

ax[1].plot(x,pn,'.',label='Poisson noise',alpha=0.5)
ax[1].plot(x,y,label='Original',lw=2)
ax[1].set_ylim([-1,5])
ax[1].set_title('Poisson noise');
ax[1].axis('off')

stdmin = pn[(idxmin-100):(idxmin+100)].std()
stdmax = pn[(idxmax-100):(idxmax+100)].std()
ax[1].plot([x[idxmin],x[idxmin]],[y[idxmin]+stdmin,y[idxmin]-stdmin],lw=5,c='red',

↪label=r"$\mu \pm \sigma$")
ax[1].plot([x[idxmax],x[idxmax]],[y[idxmax]+stdmax,y[idxmax]-stdmax],lw=5,c='red')
ax[1].legend();

ax[2].plot(x,ng);ax[2].axis('off');
ax[3].plot(x,pn-y);ax[3].axis('off');
plt.suptitle('Samples of two distributions');

8 CONTENTS

Quantitative Big Imaging - Image enhancement

Noise models - Salt’n’pepper noise

• A type of outlier noise
• Noise frequency described as probability of outlier
• Can be additive, multiplicative, and independent replacement

Example model $𝑠𝑝(𝑥) =
⎧{
⎨{⎩

−1 𝑥 ≤ 𝜆1
0 𝜆1 < 𝑥 ≤ 𝜆2
1 𝜆2 < 𝑥

𝑥 ∈ 𝒰(0, 1)
𝜆1 < 𝜆2
𝜆1 + 𝜆2 = noise fraction

$

Salt’n’pepper examples

def snp(dims,Pblack,Pwhite) : # Noise model function
uni=np.random.uniform(0,1,dims)
img=(Pwhite<uni).astype(float)-(uni<Pblack).astype(float)
return img

img10_90=snp([100,100],0.1,0.9); img5_95=snp([100,100],0.05,0.95);img1_99=snp([100,
↪100],0.01,0.99)

plt.figure(figsize=[15,5])
plt.subplot(1,3,1); plt.imshow(img1_99,cmap='gray'); plt.title('λ_1=1% and $\

↪lambda_2$=99%',fontsize=16); plt.axis('off');
plt.subplot(1,3,2); plt.imshow(img5_95,cmap='gray'); plt.title('λ_1=5% and $\

↪lambda_2$=95%',fontsize=16); plt.axis('off');
plt.subplot(1,3,3); plt.imshow(img10_90,cmap='gray'); plt.title('λ_1=10% and

↪λ_2=90%',fontsize=16); plt.axis('off'); (continues on next page)

0.3. Noise and artifacts 9

Quantitative Big Imaging - Image enhancement

(continued from previous page)

0.3.2 Signal to noise ratio

It is important to know how strong the noise is compared to the signal in order to decide how to proceed with the analysis.
Therefore, we need a metric to quantify the noise.
The Signal to noise ratio measures the noise strengh in a signal
Definition

𝑆𝑁𝑅 = 𝑚𝑒𝑎𝑛(𝑓)
𝑠𝑡𝑑𝑑𝑒𝑣(𝑓)

Sometimes the term contrast to noise ratio is also used. This means that you measure the intensity difference in between
two relevant features and divide this by the noise.

Signal to noise ratio for Poisson noise

The SNR of poisson noise is particularly easy to compute because 𝐸[𝑥] = 𝑣[𝑥]. This means that the SNR is proportional
to the square root of the number of particles.

• For a Poisson distribution the SNR is :

𝑆𝑁𝑅 = 𝐸[𝑥]
𝑠[𝑥] ∼ 𝑁√

𝑁
=

√
𝑁

• 𝑁 is the number of particles ∼ exposure time
where N is the number of captured particles. The figure below shows two neutron images acquired at 0.1s and 10s
respectively. The plot shows the signal to noise ratio obtained for different exposure times.
The signal to noise ratio can be improved by increasing the number of neutrons per pixel. This can be achived through
increasing

• Neutron flux - this is usually relatively hard as the neutron sources operate with the parameters it is designed for.
There is a posibilty by changing the neutron aperture, but has an impact of the beam quality.

• Exposure time - the exposure time can be increased but in the end there is a limitation on how much this can be
used. Beam time is limited which means the experiment must be finished in a given time. There is also an upper
limit on the exposure time defined by the observed sample or process when it changes over time. Too long exposure
times will result in motion artefacts.

10 CONTENTS

Quantitative Big Imaging - Image enhancement

• Pixel size - increasing the pixel size means that neutrons are collected over a greater area and thus more neutrons
are captured during the exposure. The limit on how much you can increase the pixel size is defined by the smallest
features you want to detect.

• Detector material and thickness - the number of captured neutrons depends on the scintillator material and how
thick it is. The thickness does however have an impact on the resolution. Therefore scintillator thickness and pixel
size often increase in parallel as there is no point in oversampling a smooth signal to much.

In the end, there are many parameters that combined results in the SNR you obtain. These parameters are tuned to match
the experiment conditions. The filtering techniques presented in this lecture can help to increase the SNR and hopefuly
make the way for a quantitaive analysis.

exptime=np.array([50,100,200,500,1000,2000,5000,10000])
snr = np.array([8.45949767, 11.40011621, 16.38118766, 21.12056507, 31.09116641,40.

↪65323123, 55.60833117, 68.21108979]);
marker_style = dict(color='cornflowerblue', linestyle='-', marker='o',markersize=10,␣

↪markerfacecoloralt='gray');
fig,ax = plt.subplots(1,3,figsize=(15,4))

ax[1].plot(exptime/1000,snr, **marker_style);
ax[1].set_xlabel('Exposure time [s]');
ax[1].set_ylabel('SNR [1]')
img50ms = plt.imread('figures//tower_50ms.png');
img10000ms = plt.imread('figures/tower_10000ms.png');

ax[0].imshow(img50ms);
ax[0].set_title('50ms');

ax[2].imshow(img10000ms)
ax[2].set_title('10s');

con0 = ConnectionPatch(xyA=(450,700), xyB=(exptime[0]/1000,snr[0]),
coordsA="data", coordsB="data",
axesA=ax[0], axesB=ax[1],
color="crimson", lw=3)

ax[1].add_artist(con0)

con2 = ConnectionPatch(xyA=(0,200), xyB=(exptime[-1]/1000,snr[-1]),
coordsA="data", coordsB="data",
axesA=ax[2], axesB=ax[1],
color="crimson", lw=3)

ax[1].add_artist(con2);

0.3. Noise and artifacts 11

Quantitative Big Imaging - Image enhancement

0.3.3 Useful python functions

Random number generators [numpy.random]

Generate an𝑚× 𝑛 random fields with different distributions:
• Gauss np.random.normal(mu,sigma, size=[rows,cols])

• Uniform np.random.uniform(low,high,size=[rows,cols])

• Poisson np.random.poisson(lambda, size=[rows,cols])

Statistics

• np.mean(f), np.var(f), np.std(f) Computes the mean, variance, and standard deviation of an image
𝑓 .

• np.min(f),np.max(f) Finds minimum and maximum values in 𝑓 .
• np.median(f), np.rank() Selects different values from the sorted data.

0.4 Basic filtering

0.4.1 What is a filter?

In general terms a filter is a component that separates mixed components form each other. In chemistry you use a filter
to separate solid patricles from liquid. In signal processing the filter is used to separate frequencies in signals. In image
processing we are not only talking about frequencies but also structures. This is something we will look into in a few
weeks when we talk about morphological image processing.

General definition

A filter is a processing unit that
• Enhances the wanted information
• Suppresses the unwanted information
Ideally without altering relevant features beyond recognition .

The filter should ideally perform the task it is meant to do, but at the same time maintain the information we want to
keep. This is often a difficult problem, in particular with traditional filters. They apply the same characteristics to any
pixel without concerning what this pixel actually represents. It only sees frequencies! As a consequence you may cancel
all relevant information in the image in your mission to remove the noise.

12 CONTENTS

Quantitative Big Imaging - Image enhancement

0.4.2 Filter characteristics

Filters are characterized by the type of information they suppress or amplify.
In signal and image processing filters are applied to modify the amplitudes of different frequencies in the signal. Slow
variations have low frequencies while rapid variations have high frequencies.

Low-pass filters

Low pass filters are designed to suppress frequencies in the upper part of the spectrum in order to better show slow changes
in the images. The effect of a lowpass filter is that the images are blurred.

Fig. 1: The principle of a low-pass filter.

• Slow changes are enhanced
• Rapid changes are suppressed

High-pass filters

High pass filters are the opposite of the low pass filters as the name suggests. The suppress low frequency components of
the spectrum leaving the rapid changes untouched. This is an important filter for edge detection as we will see later.

Fig. 2: The principle of a high-pass filter.

• Rapid changes are enhanced
• Slow changes are suppressed

0.4. Basic filtering 13

Quantitative Big Imaging - Image enhancement

0.5 Basic filters

0.5.1 Linear filters

Computed using the convolution operation

𝑔(𝑥) = ℎ ∗ 𝑓(𝑥) = ∫
Ω
𝑓(𝑥 − 𝜏)ℎ(𝜏)𝑑𝜏

where
• 𝑓 is the image
• ℎ is the convolution kernel of the filter

0.5.2 Low-pass filter kernels

The most common linear filters used in image processing are the box filter and the Gauss filter. The box filter has a kernel
where all filter weights have the same strength. This filter essentially computes the local average of the neighborhood it
covers. A 5x5 box filter looks like this

𝐵 = 1
25 ⋅

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

The scaling by the number of weights is sometimes omitted, but this would mean that the intensity of the resulting image
is upscaled by this factor.
The Gauss filter kernel has its weights from the N-Dimensional Gauss function. Here, a 2D kernel:

𝐺(𝑥, 𝑦) = 𝑒− 𝑥2+𝑦2
2𝜎2

The Gauss function is a continuous function that extends to infinity. Therefore, we have to define the size of the discrete
kernel. A good choise is 𝑁 = 2 ⋅ ⌈2𝜎⌉ + 1, multiple of 𝜎 can also be set to 2.5 or even 3 but that is almost too much
because the boundary weights are very small compared to the central value.

𝐺(𝑥, 𝑦) = 𝑒− 𝑥2+𝑦2
2𝜎2

Example: $𝐵 = 1
25 ⋅

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

$

Example:

14 CONTENTS

Quantitative Big Imaging - Image enhancement

Fig. 1: The shape of a Gaussian filter kernel.

0.5.3 Different SNR using a Gauss filter

The main purpose of lowpass filters is to reduce the noise in the images. In the following example you can see images
with different SNR and what happens when you apply Gauss filters with different 𝜎.

fig, ax = plt.subplots(3,4,figsize=(15,10)); ax=ax.ravel()
img = plt.imread('figures/input_orig.png');
noise = np.random.normal(0,1,size=img.shape);
SNRs = [1000,10, 5, 2]
sigmas = [0.001,1,3]
for r,sigma in enumerate(sigmas) :

for c,SNR in enumerate(SNRs) :
ax[r*(len(SNRs))+c].imshow(ski.filters.gaussian(img+noise/SNR,sigma=sigma),

↪cmap='gray');
ax[r*(len(SNRs))].set_ylabel('σ={0}'.format(sigma))

for c,SNR in enumerate(SNRs) :
ax[c].set_title('SNR={0}'.format(SNR))

0.5. Basic filters 15

Quantitative Big Imaging - Image enhancement

What you see in the example is that you will need a wider filter kernel to reduce noise in images with low SNR. The
cost of the SNR improvement is unfortunately that fine details in the image are also blurred by the operation. From this
example we can conclude that linear filters can’t be applied with out consequences for the image content. Therefore, we
have to carefully select filter kernel balancing the improvement in SNR against loss of image features.

0.5.4 How is the convolution computed

Before, we saw that the convolution was comouted using an integral. This is however the definition for continuous
variables. In image processing, we change the integral into a sum instead. The convolution is then a weighted sum of
the neighborhood pixels. The example below shows how a pixel is updated using a box kernel with the size 3x3. This
operation is repeated for all pixels or voxels in the image.

For a non-uniform kernel each term is weighted by its kernel weight.

0.5.5 Euclidean separability

The convolution involves quite many additions and multiplications to perform. This can be a bottleneck in a complicated
processing workflow. Fortunately, some tricks can be used to recude the number of operations needed for the convolution.
The asociative and commutative laws apply to convoution

(𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) and 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎

A convolution kernel is called separable if it can be split in two or more parts.
This is the case for the two filter kernels we have seen until now:

16 CONTENTS

Quantitative Big Imaging - Image enhancement

2
52

23164

53343
6343

4342
4453
4

5
55

3.3

3.63.3

3.23.23.33.83.7

3.23.3

3.73.73.43.7

(5+3+4+4+3+3+4+3+4)/9=3.7

Fig. 2: Updating one pixel using a 3x3 box filter.

Examples of separable kernels

Box

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

=
⋅
⋅
⋅

∗ ⋅ ⋅ ⋅

Gauss

exp−𝑥2 + 𝑦2
2𝜎2 = exp− 𝑥2

2𝜎2 ∗ exp− 𝑦2
2𝜎2

Gain of using separable kernels

Let’s see what it brings to split the kernels in to the principal directions of the image.
Separability reduces the number of computations→ faster processing

• 3×3→ 9 mult and 8 add⇔ 6 mult and 4 add
• 3×3×3→ 27 mult and 26 add⇔ 9 mult and 6 add

The gain is moderate in the 3x3 case, but if we increase the kernel size to 5 instead we see that the gain is increasing
radically:

• 5×5→ 25 mult and 24 add⇔ 10 mult and 8 add
• 5×5×5→ 125 mult and 124 add⇔ 15 mult and 12 add

This looks very promising and it would be great. There are however some things to consider:
• Overhead to call the filter function may consume some of the time gain from the separability.
• The result may deviate a little depending on the used numerical precision used.

0.5. Basic filters 17

Quantitative Big Imaging - Image enhancement

0.5.6 The median filter

The median filter is a non-linear filter with low-pass characteristics. This filter computes the local median using the pixels
in the neighborhood and uses this value in the filtered image.

2
52

23164

53343
6343

4342
4453

4

5
55

3

33.5

3.53343.5

33.5

4334

Sort {5,3,4,4,3,3,4,3,4} {3, 3, 3, 3, 4, 4, 4, 4, 5}

Fig. 3: Updating a pixel from its neighborhood using a 3x3 median filter.

0.5.7 Comparing filters for different noise types

Both linear low-pass filters and the median filter have SNR improving charactersitics. They do, however, differ in which
noise types they are suited for. In the example below you see an image with add Gaussian noise and salt’n’pepper noise.

img = plt.imread('figures/grasshopper.png'); noise=img+np.random.normal(0,0.1,
↪size=img.shape); spots=img+0.2*snp(img.shape,0,0.8); noise=(noise-noise.min())/
↪(noise.max()-noise.min());spots=(spots-spots.min())/(spots.max()-spots.min());

plt.figure(figsize=[15,10]); vmin=0.0; vmax=0.9;
cmap='viridis'
plt.subplot(2,3,1); plt.imshow(spots,vmin=vmin,vmax=vmax,cmap=cmap,interpolation='none

↪'); plt.title('Spots'); plt.axis('off');
plt.subplot(2,3,2); plt.imshow(ski.filters.gaussian(spots,sigma=1),vmin=vmin,

↪vmax=vmax,cmap=cmap,interpolation='none'); plt.title('Gauss filter'); plt.axis('off
↪');

plt.subplot(2,3,3); plt.imshow(ski.filters.median(spots,disk(3)),vmin=vmin,vmax=vmax,
↪cmap=cmap); plt.title('Median'); plt.axis('off');

plt.subplot(2,3,4); plt.imshow(noise,vmin=vmin,vmax=vmax,cmap=cmap); plt.title(
↪'Gaussian noise'); plt.axis('off');

plt.subplot(2,3,5); plt.imshow(ski.filters.gaussian(noise,sigma=1),vmin=vmin,
↪vmax=vmax,cmap=cmap); plt.title('Gauss filter'); plt.axis('off');

plt.subplot(2,3,6); plt.imshow(ski.filters.median(noise,disk(3)),vmin=vmin,vmax=vmax,
↪cmap=cmap); plt.title('Median'); plt.axis('off');

18 CONTENTS

Quantitative Big Imaging - Image enhancement

In this comparison, you can clearly see that the median filter is supperior when it comes to remove outliers in an image.
In this case, the Gauss filter is only smearing out the outliers, but they still appear as noisy.
In the case of Gaussian noise, it is harder to tell which filter to use. Many are using the median filter as their main goto
choise to filter images. Because it is usually gentler to edges and is also good at removing spots. Still, you should be aware
of the additional processing time and also that the statistical distribution of the data is not following the original model
anymore. The distribution of the data may not be of any concern in many cases, but if you are trying to process the image
further based on its distribution, this may result in less good results.

0.5.8 Filter example: Spot cleaning

• Many neutron images are corrupted by spots that confuse following processing steps.
• The amount, size, and intensity varies with many factors.
• Low pass filter
• Median filter
• Detect spots and replace by estimate

0.5. Basic filters 19

Quantitative Big Imaging - Image enhancement

Fig. 4: A neutron image with outliers that we want to remove.

0.5.9 Spot cleaning algorithm

Original Median

Abs(Med-Orig)
Cleaned

Abs

k<

<k

Median
NxN

*

*
Thresholds Detection masks

Outliers

Expected data

Replacement

Keep original

Fig. 5: Process workflow to selectively remove spots from an image.

Parameters
• 𝑁 Width of median filter.
• 𝑘 Threshold level for outlier detection.

20 CONTENTS

Quantitative Big Imaging - Image enhancement

0.5.10 Spot cleaning - Compare performance

Fig. 6: Comparing different filters to remove spots from an image.

The ImageJ ways for outlier removal

ImageJ is a popular application for interactive image analysis. It offers two ways to remove outliers in the noise menu:
• DespeckleMedian … please avoid this one!!!
• Remove outliers Similar to cleaning described algorithm

0.5.11 High-pass filters

High-pass filters enhance rapid changes→ ideal for edge detection

Typical high-pass filters:

Gradients $ 𝜕
𝜕𝑥 = 1

2 ⋅ −1 1 $

𝜕
𝜕𝑥 = 1

32 ⋅
−3 0 3
−10 0 10
−3 0 3

Laplacian$△ = 1
2 ⋅

1 2 1
2 −12 2
1 2 1

$

0.5. Basic filters 21

Quantitative Big Imaging - Image enhancement

Sobel - Magnitude of grandient

𝐺 = |∇𝑓| = √(𝜕
𝜕𝑥𝑓)

2
+ (𝜕

𝜕𝑦𝑓)
2

0.5.12 Gradient example - structure orientation

Vertical edges $ 𝜕
𝜕𝑥 = 1

32 ⋅
−3 0 3
−10 0 10
−3 0 3

$

Horizontal edges $ 𝜕
𝜕 𝑦 = 1

32 ⋅
−3 −10 −3
0 0 0
3 10 3

$

Jaehne, 2005

img=plt.imread('figures/orig.png')
k = np.array([[-3,-10,-3],[0,0,0],[3,10,3]]);
plt.figure(figsize=[12,5])
plt.subplot(1,3,1); plt.imshow(img);plt.title('Original');
plt.subplot(1,3,2); plt.imshow(ndimage.convolve(img,np.transpose(k)));plt.title('$\

↪partial / \partial x$');
plt.subplot(1,3,3); plt.imshow(ndimage.convolve(img,k));plt.title('$\partial / \

↪partial y$');

0.5.13 Edge detection examples

img=plt.imread('figures/orig.png');
plt.figure(figsize=[15,6])
plt.subplot(1,2,1);plt.imshow(ski.filters.laplace(img),clim=[-0.08,0.08]); plt.title(

↪'Laplacian'); plt.colorbar(shrink=0.8);
plt.subplot(1,2,2);plt.imshow(ski.filters.sobel(img)); plt.title('Sobel'); plt.

↪colorbar(shrink=0.8);

22 CONTENTS

https://doi.org/10.1007/3-540-27563-0

Quantitative Big Imaging - Image enhancement

0.5.14 Relevance of filters to machine learning

Fig. 7: An example of a convolutional neural network for image classification.

NVIDIA Developer zone

0.6 Frequency space filters

We already mentioned that the there are frequencies to filter in images. There is a whole collection of filters that operate
directly in frequency space. This is mostly done using the Fourier transform and its inverse.

0.6.1 Applications of the Fourier transform

0.6.2 The Fourier transform

You may only know the Fourier transform for the 1D case. It is however very easy to increase the number of dimensions.
Below you see the 2D Fourier transform and its inverse. These operations are lossless one-to-one, meaning you can go
from one domain to the other without loosing any information.
Transform

𝐺(𝜉1, 𝜉2) = ℱ{𝑔} = ∫
∞

−∞
∫

∞

−∞
𝑔(𝑥, 𝑦) exp−𝑖(𝜉1𝑥 + 𝜉2𝑦) 𝑑𝑥 𝑑𝑦

0.6. Frequency space filters 23

https://developer.nvidia.com/discover/convolutional-neural-network

Quantitative Big Imaging - Image enhancement

Inverse

𝑔(𝑥, 𝑦) = ℱ−1{𝐺} = 1
(2 𝜋)2 ∫

∞

−∞
∫

∞

−∞
𝐺(𝜉1, 𝜉2) exp 𝑖(𝜉1𝑥 + 𝜉2𝑦)𝑑𝜉1𝑑𝜉2

FFT (Fast Fourier Transform)

The previous equations are meant for continuous signals. Images are discrete signals and the integrals turn into sums. This
may introduce some numerical losses when the transforms are computed. Computing the DFT is an 𝑂(𝑁2) operation.
There is a way to speed this up by using the Fast Fourier Transform algorithm. This algorithm requires that the data has
the length 𝑁 = 2𝑘. In this case the complexity reduces to 𝑂(𝑁 ⋅ log(𝑁)), which is a radical speed-up.
In practice - you never see the transform equations.The Fast Fourier Transform algorithm is available in numerical libraries
and tools. Jaehne, 2005

0.6.3 Some mathematical features of the FT

Additition

Addition of Fourier spectra works the same way as for real space signal. The reason is that the transform is based on
summarions. You probably proved this as an exercise in your math classes. The plots below shows the spectra of the sum
of two signals.
ℱ{𝑎 + 𝑏} = ℱ{𝑎} +ℱ{𝑏}

x = np.linspace(0,50,100); s0=np.sin(0.5*x); s1=np.sin(2*x);
plt.figure(figsize=[15,5])
plt.subplot(2,3,1);plt.plot(x,s0); plt.axis('off');plt.title('s_0');plt.subplot(2,3,

↪4);plt.plot(np.abs(np.fft.fftshift(np.fft.fft(s0))));plt.axis('off');
plt.subplot(2,3,2);plt.plot(x,s1); plt.axis('off');plt.title('s_1');plt.subplot(2,3,

↪5);plt.plot(np.abs(np.fft.fftshift(np.fft.fft(s1))));plt.axis('off');
plt.subplot(2,3,3);plt.plot(x,s0+s1); plt.axis('off');plt.title('s_0+s_1');plt.

↪subplot(2,3,6);plt.plot(np.abs(np.fft.fftshift(np.fft.fft(s0+s1))));plt.axis('off');

24 CONTENTS

https://doi.org/10.1007/3-540-27563-0

Quantitative Big Imaging - Image enhancement

Convolution

Convolution, which is a relatively intense task to perform in real space reduces to a frequency-wise multiplication in the
Fourier space. This is a very useful property of the transform. It allows to design some filters much easier than in real
space. In particular, band stop filters to remove a specific feature in the image. Also filters with wide kernels can be faster
to compute using the Fourier transform.
ℱ{𝑎 ∗ 𝑏} = ℱ{𝑎} ⋅ ℱ{𝑏}
alternatively
ℱ{𝑎 ⋅ 𝑏} = ℱ{𝑎} ∗ ℱ{𝑏}

0.6.4 Additive noise in Fourier space

Real space

img = plt.imread('figures/bp_ex_original.png');
noise = np.random.normal(0,0.2,size=img.shape);
nimg = img+noise;

#Visualization
fig,ax= plt.subplots(1,3,figsize=[15,3])
ax[0].imshow(img); ax[0].set_title('Image');
ax[1].imshow(noise);ax[1].set_title('Noise');
ax[2].imshow(nimg); ax[2].set_title('Image + noise');

Fourier space

fimg = np.fft.fftshift(np.fft.fft2(img))
fnoise = np.fft.fftshift(np.fft.fft2(noise))
fnimg = np.fft.fftshift(np.fft.fft2(nimg))

#Visualization
fig,ax =plt.subplots(1,3,figsize=[15,3])

ax[0].imshow(np.abs(fimg),norm=LogNorm());
ax[0].set_title(r'| \mathcal{F} Image |');
ax[1].imshow(np.abs(fnoise),norm=LogNorm());
ax[1].set_title(r'| \mathcal{F} Noise |');
ax[2].imshow(np.abs(fnimg),norm=LogNorm())
ax[2].set_title(r'| \mathcal{F} Image + noise |');

0.6. Frequency space filters 25

Quantitative Big Imaging - Image enhancement

The FFT algorithm result in a cyclic representation of the Fourier transform and the quadrants of the transformed images
are permuted such that 𝜉0, 𝜉1 = (0, 0) is located in the top-left corner and 𝜉0, 𝜉1 = (−𝜖,−𝜖) is located in the lower right
corner. The function fftshift permutes the quadrants to place the (0,0) in the center of the image.

Convolution in Fourier space

How can we suppress noise without destroying relevant image features?

ff=np.fft.fftshift(np.fft.fft2(nimg))
x,y = np.meshgrid(np.linspace(-1,1,ff.shape[1]),np.linspace(-1,1,ff.shape[1]))
R=np.sqrt(x**2+y**2)
H=R<0.5
H=np.exp(-R**2/0.1)
H=np.maximum(np.abs(x)<0.05,np.abs(y)<0.05)
hff=np.fft.ifft2(np.fft.fftshift(H*ff)) # the inverse FFT back to the spatial domain

fig,ax = plt.subplots(1,5,figsize=(15,5))
ax[0].imshow(nimg)
ax[0].set_title('Noisy image f')
ax[1].imshow(np.log(np.abs(ff)))
ax[1].set_title('log($|\mathcal{F}\{f\}|$)')
ax[2].imshow(H)
ax[2].set_title('Filter window H')
ax[3].imshow(H*np.log(np.abs(ff)))
ax[3].set_title('log($|H\cdot{}\mathcal{F}\{f\}|$)')
ax[4].imshow(np.abs(hff));
ax[4].set_title('Filtered image');

26 CONTENTS

Quantitative Big Imaging - Image enhancement

Wiener filter in Fourier space

The Wiener filter is a filter that is optimised for the noise model and pointspread function.

𝐺(𝑢, 𝑣) = 𝐻∗(𝑢, 𝑣)𝑃𝑠(𝑢, 𝑣)
|𝐻(𝑢, 𝑣)|2𝑃𝑠(𝑢, 𝑣) + 𝑃𝑛(𝑢, 𝑣)

• 𝐻(𝑢, 𝑣) Fourier transform of the point-spread function
• 𝑃𝑠(𝑢, 𝑣) Power spectrum of the signal process. Obtained by taking FFT of the signal autocorrelation.
• 𝑃𝑛(𝑢, 𝑣) Power spectrum of the noise process. Obtained by taking FFT of the signal autocorrelation.

Special case of the Wiener filter

In the case of additive white Gaussian noise and excluding the PSF, the Wiener filter reduces to

𝐺(𝑢, 𝑣) = 𝑃𝑠(𝑢, 𝑣)
𝑃𝑠(𝑢, 𝑣) + 𝜎2𝑛

Here for
• 𝑃𝑠(𝑢, 𝑣) >> 𝜎2 ⇒ 𝐺(𝑢, 𝑣) = 1
• 𝑃𝑠(𝑢, 𝑣) << 𝜎2 ⇒ 𝐺(𝑢, 𝑣) = 0

Problem: We need to know or measure 𝑃𝑠(𝑢, 𝑣)

Demonstration of the Wiener filter in AWGN

fimg=np.fft.fftshift(np.fft.fft2(img))
Ps=fimg*np.conj(fimg)

var=0.1*np.prod(nimg.shape)*noise.var()
G=Ps/(Ps+10*var)
fnimg=np.fft.fftshift(np.fft.fft2(nimg))
filtered=np.real(np.fft.ifft2(np.fft.fftshift(G*fnimg)))

fig,ax=plt.subplots(2,4,figsize=(15,8))
ax=ax.ravel()
ax[1].imshow(np.abs(Ps),norm=LogNorm())
ax[2].imshow(np.abs(G),norm=LogNorm())
ax[3].imshow(filtered)
ax[0].imshow(nimg)
ax[6].axis('off')
ax[5].axis('off')
ax[7].hist(filtered.ravel(),bins=100);
ax[4].hist(nimg.ravel(),bins=100);

0.6. Frequency space filters 27

Quantitative Big Imaging - Image enhancement

0.6.5 Spatial frequencies and orientation

def ripple(size=128,angle=0,w0=0.1) :
w=w0*np.linspace(0,1,size);
[x,y]=np.meshgrid(w,w);
img=np.sin((np.sin(angle)*x)+(np.cos(angle)*y));
return img

N=64;
fig, ax = plt.subplots(2,4, figsize=(15,6)); ax=ax.ravel()

for idx,angle in enumerate([0,30,60,90]) :
d=ripple(N,angle=(angle+0.1)/180*np.pi,w0=100);
ax[idx].imshow(d); ax[idx].set_title(r'{0}'.format(angle)+r'$^{\circ}$'); ax[idx].

↪axis('off');
ax[idx+4].imshow((np.abs(np.fft.fftshift(np.fft.fft2(d))))); ax[idx+4].axis('off

↪');

28 CONTENTS

Quantitative Big Imaging - Image enhancement

0.6.6 Example - Stripe removal in Fourier space

• Transform the image to Fourier space $ℱ2𝒟 {𝑎} ⇒ 𝐴$
• Multiply spectrum image by band pass filter $𝐴𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝐴 ⋅ 𝐻$

• Compute the inverse transform to obtain the filtered image in real space $ℱ2𝒟
−1 {𝐴𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑} ⇒ 𝑎𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑$

plt.figure(figsize=[10,8])
plt.subplot(4,1,1);plt.imshow(plt.imread('figures/raw_img.png')); plt.title('a');␣

↪plt.axis('off');
plt.subplot(4,1,2);plt.imshow(plt.imread('figures/raw_spec.png')); plt.title('$\

↪mathcal{F}(a)$'); plt.axis('off');
plt.subplot(4,1,3);plt.imshow(plt.imread('figures/filt_spec.png')); plt.title('Kernel

↪H'); plt.axis('off');
plt.subplot(4,1,4);plt.imshow(plt.imread('figures/filt_img.png')); plt.title('$a_

↪{filtered}$'); plt.axis('off');

0.6. Frequency space filters 29

Quantitative Big Imaging - Image enhancement

0.6.7 The effect of the stripe filter

Intensity variations are suppressed using the stripe filter on all projections.

30 CONTENTS

Quantitative Big Imaging - Image enhancement

Fig. 1: CT slice before stripe removal filter.

0.6. Frequency space filters 31

Quantitative Big Imaging - Image enhancement

Fig. 2: CT slice after applying stripe removal filter.

32 CONTENTS

Quantitative Big Imaging - Image enhancement

0.6.8 Technical details on Fourier space filters

When should you use convolution in Fourier space?

• Simplicity
• Kernel size
• Speed at repeated convolutions

Zero padding

The FFT is only working with data of size in 2𝑁 . If your data has a different length, you have to pad (fill with constant
value) up the next 2𝑁 .

0.6.9 Python functions

Filters in the spatial domain

e.g. from scipy import ndimage

• ndimage.filters.convolve(f,h) Linear filter using kernel ℎ on image 𝑓 .
• ndimage.filters.median_filter(f,\[n,m\])Median filter using an 𝑛 ×𝑚 filter neighborhood

Fourier transform

• np.fft.fft2(f) Computes the 2D Fast Fourier Transform of image 𝑓
• np.fft.ifft2(F) Computes the inverse Fast Fourier Transform 𝐹 .
• np.fft.fftshift() Rearranges the data to center the 𝜔=0. Works for 1D and 2D.

Complex numbers

• np.abs(f), np.angle(f) Computes amplitude and argument of a complex number.
• np.real(f), np.imag(f) Gives the real and imaginary parts of a complex number.

0.7 Scale spaces

0.7.1 Why scale spaces?

Motivation

Basic filters have problems to handle low SNR and textured noise.

0.7. Scale spaces 33

Quantitative Big Imaging - Image enhancement

The solution

Filtering on different scales can take noise suppression one step further.

Fig. 1: A scale pyramid of an image can be useful for filtering and segmentation.

0.7.2 Wavelets - the basic idea

• The wavelet transform produces scales by decomposing a signal into two signals at a coarser scale containing
\emph{trend} and \emph{details}.\

• The next scale is computed using the trend of the previous transform

𝑊𝑇{𝑠} → {𝑎1, 𝑑1},𝑊𝑇{𝑎1} → {𝑎2, 𝑑2},… ,𝑊𝑇{𝑎𝑁−1} → {𝑎𝑁 , 𝑑𝑁}
• The inverse transform brings 𝑠 back using {𝑎𝑁 , 𝑑1,… , 𝑑𝑁}.
• Many wavelet bases exists, the choice depends on the application.

Applications of wavelets

• Noise reduction
• Analysis
• Segmentation
• Compression

Walker 2008 Mallat 2009

0.7.3 Wavelet transform of a 1D signal

Using symlet-4

34 CONTENTS

https://doi.org/10.1201/9781584887461
https://doi.org/10.1016/B978-0-12-374370-1.X0001-8

Quantitative Big Imaging - Image enhancement

A1 D1

A2 D2

A3 D3

Input signals

SNR=10
Original

Fig. 2: A noisy test signal decomposed using the symlet-4 wavelet base function.

0.7. Scale spaces 35

Quantitative Big Imaging - Image enhancement

0.7.4 Wavelet transform of an image

d1h1

a1 v1

dv*dhdv*ah

av*ah av*dh
d3h3

a3 v3

d2h2

a2 v2

f
Fig. 3: Transform workflow for a 2D wavelet decomposition.

0.7.5 Wavelet transform of an image - example

0.7.6 Using wavelets for noise reduction

The noise is found in the detail part of the WT
• Make a WT of the signal to a level that corresponds to the scale of the unwanted information.
• Threshold the detail part 𝑑𝛾 = |𝑑| < 𝛾 ? 0 ∶ 𝑑.
• Inverse WT back to normal scale→ image is filtered.

36 CONTENTS

Quantitative Big Imaging - Image enhancement

Fig. 4: Transform workflow for a 2D wavelet decomposition.

Fig. 5: Transform workflow for a 2D wavelet decomposition.

0.7. Scale spaces 37

Quantitative Big Imaging - Image enhancement

Input signal

A1 D1

D1
thresholded

Filtered signal

Fig. 6: The principle of a basic noise reduction filter using wavelets.

38 CONTENTS

Quantitative Big Imaging - Image enhancement

0.7.7 Wavelet noise reduction - Image example

Example Filtered using two levels of the Symlet-2 wavelet

Noisy Image

50 100 150

20

40

60

80

100

120

140

Denoised Image

50 100 150

20

40

60

80

100

120

140

2 4 6 8

x104

0

100

200

300

400

500

600

700

Fig. 7: An example of noise reduction using a wavelet filter.

Data: Neutron CT of a lead scroll

0.7.8 Python functions for wavelets

• dwt2/idtw2Makes one level of the wavelet transform or its inverse using wavelet base specified by ‘wn’.
• wavedec2 Performs N levels of wavelet decomposition using a specified wavelet base.
• wbmpen Estimating threshold parameters for wavelet denoising.
• wdencmpWavelet denoising and compression using information from wavedec2 and *wbmpen.

0.8 Parameterized scale spaces

0.8.1 PDE based scale space filters

Original

0.5 1 1.5

0.5

1

1.5

Fig. 1: Noisy slice to be filtered.

These filters may work for applications where Linear and Rank filters fail.
Kaestner et al. 2008 Aubert 2002.

0.8. Parameterized scale spaces 39

https://doi.org/10.1016/j.advwatres.2008.01.022
https://doi.org/10.1007/978-0-387-44588-5

Quantitative Big Imaging - Image enhancement

Diffusion filter

0.5 1 1.5

0.5

1

1.5

Fig. 2: Slice after diffusion filter.

TV−L2 ISS filter

0.5 1 1.5

0.5

1

1.5

Fig. 3: Slice after ISS filter.

0.8.2 The starting point

The heat transport equation $𝜕𝑇
𝜕𝑡 = 𝜅∇2𝑇$

• 𝑇 Image to filter (intensity ≡ temperature)
• 𝜅 Thermal conduction capacity

0.8.3 Controlling the diffusivity

We want to control the diffusion process…
• Near edges The Diffusivity→ 0
• Flat regions The Diffusivity→ 1

The contrast function 𝐺 is our control function $𝐺(𝑥) = 1
1+(𝑥

𝜆)𝑛 $

• 𝜆 Threshold level
• 𝑛 Steepness of the threshold function

def g(x,lambd,n) :
g=1/(1+(x/lambd)**n)
return g

x=np.linspace(0,1,100);

plt.figure(figsize=(5,3))
plt.plot(x,g(x,lambd=0.5,n=12));
plt.xlabel('Image intensity (x)'); plt.ylabel('G(x)');plt.tight_layout()

40 CONTENTS

Quantitative Big Imaging - Image enhancement

0.8.4 Gradient controlled diffusivity

𝜕𝑢
𝜕𝑡 = 𝐺(|∇𝑢|)∇2𝑢

plt.subplot(1,2,1); plt.imshow(io.imread("figures/aggregates.png"),cmap='gray'); plt.
↪title('Image');

plt.subplot(1,2,2); plt.imshow(io.imread("figures/diffusivity.png"),cmap='gray'); plt.
↪title('Diffusivity map');

• 𝑢 Image to be filtered
• 𝐺(⋅) Non-linear function to control the diffusivity
• 𝜏 Time increment
• 𝑁 Number of iterations

0.8. Parameterized scale spaces 41

Quantitative Big Imaging - Image enhancement

0.8.5 The non-linear diffusion filter

A more robust filter is obtained with
𝜕𝑢
𝜕𝑡 = 𝐺(|∇𝜎𝑢|)∇2𝑢

• 𝑢 Image to be filtered
• 𝐺(⋅) Non-linear function to control the contrast
• 𝜏 Time increment per numerical iteration
• 𝑁 Number of iterations
• ∇𝜎 Gradient smoothed by a Gaussian filter, width 𝜎

0.8.6 Diffusion filter example

Neutron CT slice from a real-time experiment observing the coalescence of cold mixed bitumen.

0.8.7 Filtering as a regularization problem

The continued development

• 90’s During the late 90’s the diffusion filter was described in terms of a regularization problem.
• 00’sWork toward regularization of total variation minimization.

TV-L1

𝑢 = argmin
𝑢∈𝐵𝑉 (Ω)

⎧{
⎨{⎩
|𝑢|𝐵𝑉⏟
𝑛𝑜𝑖𝑠𝑒

+ 𝜆
2 ‖𝑓 − 𝑢‖1⏟⏟⏟⏟⏟
𝑓𝑖𝑑𝑒𝑙𝑖𝑡𝑦

⎫}
⎬}⎭

TV-L2 Rudin-Osher-Fatemi model (ROF)

𝑢 = argmin
𝑢∈𝐵𝑉 (Ω)

⎧{
⎨{⎩
|𝑢|𝐵𝑉⏟
𝑛𝑜𝑖𝑠𝑒

+ 𝜆
2 ‖𝑓 − 𝑢‖22⏟⏟⏟⏟⏟
𝑓𝑖𝑑𝑒𝑙𝑖𝑡𝑦

⎫}
⎬}⎭

with |𝑢|𝐵𝑉 = ∫Ω |∇𝑢|2

0.8.8 The inverse scale space filter

The idea

We want smooth regions with sharp edges\ldots
• Turn the processing order of scale space filter upside down
• Start with an empty image
• Add large structures successively until an image with relevant features appears

42 CONTENTS

Quantitative Big Imaging - Image enhancement

The ISS filter - Some properties

• is an edge preserving filter for noise reduction.
• is defined by a partial differential equation.
• has a well defined termination point.

Burger et al. 2006

The ROF filter equation

The image 𝑓 is filtered by solving
𝜕𝑢
𝜕𝑡 = div (∇𝑢

|∇𝑢|) + 𝜆(𝑓 − 𝑢 + 𝑣)𝜕𝑣𝜕𝑡 = 𝛼(𝑓 − 𝑢)
Variables

• 𝑓 Input image
• 𝑢 Filtered image
• 𝑣 Regularization term (feedback of previous iteration)

Filter parameters
• 𝜆 Related to the scale of the features to suppress.
• 𝛼 Quality refinement
• 𝑁 Number of iterations
• 𝜏 Time increment

Filter iterations

Neutron CT of dried lung filtered using 3D ISS filter

How to choose lambda and alpha

The requirements varies between different data sets.

Initial conditions:

• Signal to noise ratio
• Image features (fine grained or wide spread)

0.8. Parameterized scale spaces 43

https://dx.doi.org/10.4310/CMS.2006.v4.n1.a7

Quantitative Big Imaging - Image enhancement

Experiment:

• Scan 𝜆 and 𝛼
• Stop at 𝑇 = 𝑁𝜏 = 𝜎 use different 𝜏
• When does different effects occur, related to 𝜎?

Solutions at different times

1 30 60 100 200 500 999

Fig. 4: Error plot for different solution times of the ISS filter.

44 CONTENTS

Quantitative Big Imaging - Image enhancement

Solution time

The solution time (𝑇 = 𝑁𝜏) is essential to the result
• 𝜏 large The solution is reached fast
• 𝜏 small The numerical accuracy is better

The choice of initial image

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
x 10

4

Time

||
u

t−
f|
| 22

u
0
=0

u
0
=f

Fig. 5: Error plots depend on the choice of the initial image.

At some 𝑇 the solution with 𝑢0 = 𝑓 and 𝑢0 = 0 converge.

0.9 Non-local means

0.9.1 Non-local smoothing

The idea

Smoothing normally consider information from the neighborhood like
• Local averages (convolution)
• Gradients and Curvatures (PDE filters)

Non-local smoothing average similiar intensities in a global sense.
• Every filtered pixel is a weighted average of all pixels.
• Weights computed using difference between pixel intensities.

Buades et al. 2005

0.9. Non-local means 45

http://dx.doi.org/10.1137/040616024

Quantitative Big Imaging - Image enhancement

0.9.2 Filter definition

The non-local means filter is defined as $𝑢(𝑝) = 1
𝐶(𝑝) ∑𝑞∈Ω 𝑣(𝑞)𝑓(𝑝, 𝑞)$ where

• 𝑣 and 𝑢 input and result images.
• 𝐶(𝑝) is the sum of all pixel weights as 𝐶(𝑝) = ∑𝑞∈Ω 𝑓(𝑝, 𝑞)

• 𝑓(𝑝, 𝑞) is the weighting function 𝑓(𝑝, 𝑞) = 𝑒− |𝐵(𝑞)−𝐵(𝑝)|2
ℎ2

• B(x) is a neighborhood operator e.g. local average around 𝑥

0.9.3 Non-local means 2D - Example

Fig. 1: Demonstration on the non-local means filter.

Observations

• Good smoothing effect.
• Strong thin lines are preserved.
• Some patchiness related to filter parameter 𝑡, i.e. the size of Ω𝑖.

0.9.4 Performance complications

Problem

The orignal filter compares all pixels with all pixels\ldots\
• Complexity 𝒪(𝑁2)
• Not feasible for large images, and particular 3D images!

46 CONTENTS

Quantitative Big Imaging - Image enhancement

Solution

It has been shown that not all pixels have to be compared to achieve a good filter effect. i.e. Ω in the filter equations can
be replaced by Ω𝑖 << Ω

0.9.5 Explore the Non-local means in more detail

A notebook is prepared to study the non-local means.

0.10 Enhancing and analyzing orientation

Many images have structures with dominant orientations locally and globally.

balls = io.imread('figures/recon5s_0130.tif').astype(float)
hair = io.imread('figures/hair.jpeg').astype(float).mean(axis=2)
pea = io.imread('figures/peacock.jpeg').astype(float).mean(axis=2)

fig,ax = plt.subplots(1,3,figsize=(15,5))
ax[0].imshow(balls,cmap='gray')
ax[0].set_title('Balls')
ax[1].imshow(hair,cmap='gray')
ax[1].set_title('Hair')
ax[2].imshow(pea,cmap='gray')
ax[2].set_title('Peakcock feather');

The question is how we can measure them…

0.10.1 Gradients

We just learned that the gradient can isolate edge information in the image. It is also computed along the principal axes
of the image. Below, we see the gradient of the three test images.

fig,ax = plt.subplots(2,3,figsize=(16,9))
ax=ax.ravel()
sigma=1
ax[0].imshow(gaussian_filter(balls,sigma,order=[0,1]),cmap='gray')
ax[0].set_title(r'∂_x Balls')

(continues on next page)

0.10. Enhancing and analyzing orientation 47

Quantitative Big Imaging - Image enhancement

(continued from previous page)

ax[1].imshow(gaussian_filter(hair,sigma,order=[0,1]),cmap='gray')
ax[1].set_title(r'∂_x Hair')
t = ax[1].text(180,200, "Vertical",

ha="center", va="center", rotation=90, size=10,
bbox=dict(boxstyle="rarrow,pad=0.4",

fc="lightblue", ec="steelblue", lw=1))
ax[2].imshow(gaussian_filter(pea,sigma,order=[0,1]),cmap='gray')
ax[2].set_title(r'∂_x Peakcock feather');

ax[3].imshow(gaussian_filter(balls,sigma,order=[1,0]),cmap='gray')
ax[3].set_title(r'∂_y Balls')
ax[4].imshow(gaussian_filter(hair,sigma,order=[1,0]),cmap='gray')
ax[4].set_title(r'∂_y Hair')
t = ax[4].text(450,200, "Horizontal",

ha="center", va="center", rotation=0, size=10,
bbox=dict(boxstyle="rarrow,pad=0.4",

fc="lightblue", ec="steelblue", lw=1))
ax[5].imshow(gaussian_filter(pea,sigma,order=[1,0]),cmap='gray')
ax[5].set_title(r'∂_y Peakcock feather');

In these images, we clearly see that structures in different directions are enhanced. We can for example see that the
vertially oriented hairs are enhanced by 𝜕𝑥 and the horizontally oriented hairs by 𝜕𝑦.
… but we still only have image intensities. Now showing the local slope.

48 CONTENTS

Quantitative Big Imaging - Image enhancement

0.10.2 How about the Fourier transform?

We saw before that the Fourier transform can identify orientations.

fig,ax=plt.subplots(1,3,figsize=(15,5))
fballs = np.fft.fftshift(np.fft.fft2(balls));
ax[0].imshow(np.abs(fballs),norm=LogNorm())

fhair = np.fft.fftshift(np.fft.fft2(hair));
ax[1].imshow(np.abs(fhair),norm=LogNorm())

fpea = np.fft.fftshift(np.fft.fft2(pea));
ax[2].imshow(np.abs(fpea),norm=LogNorm());

… but mainly in the global sense. Complicated images are hard to analyze.

0.10.3 The structure tensor

Let’s try combinations of the gradients using the outer product of the gradients

𝐽(𝑓) = ∇𝑓 ⋅ ∇𝑇 𝑓 = [(𝜕𝑥𝑓)2 𝜕𝑥𝑓 ⋅ 𝜕𝑦𝑓
𝜕𝑦𝑓 ⋅ 𝜕𝑥𝑓 (𝜕𝑦𝑓)2

]

Gradients are quite noisy!Therefore, it is common to add smoothing in the computation, e.g. using a Gaussian filter.

Implementing the structure tensor

The equation to implement the structure tensor includes a Gaussian filter, 𝐺𝜎, with the filter with set by 𝜎.

𝐽𝜎(𝑓) = 𝐺𝜎 ∗ ∇𝑓 ⋅ ∇𝑇 𝑓 = [𝐺𝜎 ∗ (𝜕𝑥𝑓)2 𝐺𝜎 ∗ (𝜕𝑥𝑓 ⋅ 𝜕𝑦𝑓)
𝐺𝜎 ∗ (𝜕𝑦𝑓 ⋅ 𝜕𝑥𝑓) 𝐺𝜎 ∗ (𝜕𝑦𝑓)2

]

def structure_tensor(img,sigma) :
Ix = gaussian_filter(img,sigma,order=[0,1]) # Technical note: The Gaussian filter␣

↪function can compute
Iy = gaussian_filter(img,sigma,order=[1,0]) # derivatives.
J = {'J11' : Ix**2,

'J12' : Ix*Iy,
'J21' : Ix*Iy,
'J22' : Iy**2} # A dict of the tensor elements

return J

0.10. Enhancing and analyzing orientation 49

Quantitative Big Imaging - Image enhancement

This function computes the structure tensor of an image and stores it in a dict having the labels J11, J12, J21, and J22.
The gradients that normally would be computed using a gradient kernel is here computed together with the Gaussian
smoothing of the image. This is a special feature of the Gaussian filter function provided by scipy.ndimage.

Looking at the components of the structure tensor

J = structure_tensor(balls,1.5)

Visualization
fig,axes =plt.subplots(2,2,figsize=(6,6))
axes=axes.ravel()
for ax,j in zip(axes,J) :

m = J[j].mean()
s = J[j].std()
clims=[m-2*s,m+2*s]
cmap = 'coolwarm'

ax.imshow(J[j],clim=clims,cmap=cmap)
ax.axis('off')
ax.set_title(j,fontsize=9)

50 CONTENTS

Quantitative Big Imaging - Image enhancement

0.10.4 Local eigen-value analysis of the structure tensor

Jv = 𝜆v

where 𝜆 is a diagonal matrix $𝜆 = (𝜆1 0
0 𝜆2

)$

The coherency - C

0 ≤ 𝐶 = 𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛
𝜆𝑚𝑎𝑥 + 𝜆𝑚𝑖𝑛

= √(𝐽22 − 𝐽11)2 + 4𝐽2
12

𝐽22 + 𝐽11
≤ 1

Measures the level of confidence of the pixel/region

⎧{
⎨{⎩

𝐶 = 0 𝜆𝑚𝑖𝑛 ≈ 𝜆𝑚𝑎𝑥, the region is homogeneous, i.e. no dominant rotation.
𝐶 = 1 𝜆𝑚𝑖𝑛 ≪ 𝜆𝑚𝑎𝑥, the rotation is well aligned with one of the axes.
0 < 𝐶 < 1 the local orientation lies betwenn the axes.

def coherency(J,eps=0.1) :
return np.sqrt(((J['J22']-J['J11'])**2+4*J['J12']**2))/(J['J22']+J['J11']+eps)

The epsilon in the function is a protection against division by zero in the case when 𝐽11 and 𝐽22 are close to zero. It should
be set to a small value relative to the varaiations in the image.

Looking at the coherency

C=coherency(J,eps=(J['J22']+J['J11']).std()/10)

Visualization
fig,ax = plt.subplots(1,2,figsize=(12,4))
ax[0].imshow(balls)
ax[0].set_title('Original')
a=ax[1].imshow(C,clim=[0,1])
plt.colorbar(a,ax=ax[1])
ax[1].set_title('Local coherency');

0.10. Enhancing and analyzing orientation 51

Quantitative Big Imaging - Image enhancement

Here, eps was set to 10% of the standard deviation of 𝐽11 and 𝐽22.
Note: The coherency is high at the edges.

0.10.5 Local orientation angle

The eigen vectors represent a rotation matrix. This allows us to compute the local orientation

𝜃 = 1
2 arctan(

2𝐽12
𝐽22 − 𝐽11

)

def orientation_angle(J,eps=0.1) :
return 0.5*np.arctan2(2*J["J12"],J["J22"]-J["J11"]+eps)

Local orientations of the balls

ang = orientation_angle(J,eps=0.01)

Visualization
fig,ax = plt.subplots(1,2,figsize=(12,4))
ax[0].imshow(balls)
ax[0].set_title('Original')
a=ax[1].imshow(ang,cmap='twilight',clim=[-np.pi/2,np.pi/2])
plt.colorbar(a,ax=ax[1])
ax[1].set_title('Local orientation');

0.10.6 Images with line textures

The ball image has a relatively simple structure with clear edges to compute the direction of. Now, we will turn our focus
to textured images with collective orientations.

fig,ax=plt.subplots(1,2,figsize=(12,4))
ax[0].imshow(hair,cmap='gray')
ax[0].axis('off')

(continues on next page)

52 CONTENTS

Quantitative Big Imaging - Image enhancement

(continued from previous page)

ax[1].imshow(pea,cmap='gray')
ax[1].axis('off');

Struture tensor the hair image

Jh = structure_tensor(hair,sigma=0.75)
Ch = coherency(Jh,eps=0.05)
Ah = orientation_angle(Jh,eps=0.1)

fig,axes = plt.subplots(2,3,figsize=(15,6))
axes = axes.ravel()

axes[0].imshow(hair,cmap='gray')
axes[1].imshow(Ch)
a2=axes[2].imshow(Ah,cmap='twilight',clim=[-np.pi/2,np.pi/2])
fig.colorbar(a2,ax=axes[2])
axes[3].hist(hair.ravel(),bins=200);
axes[4].hist(Ch.ravel(),bins=200);
axes[5].hist(Ah.ravel(),bins=200);

0.10. Enhancing and analyzing orientation 53

Quantitative Big Imaging - Image enhancement

Structure tensor of the peacock feather

Jp = structure_tensor(pea,sigma=0.75)
Cp = coherency(Jp,eps=1)
Ap = orientation_angle(Jp,eps=0.1)

fig,axes = plt.subplots(2,3,figsize=(13,6))
axes = axes.ravel()

axes[0].imshow(pea,cmap='gray')
axes[1].imshow(Cp)
a2=axes[2].imshow(Ap,cmap='twilight',clim=[-np.pi/2,np.pi/2])
fig.colorbar(a2,ax=axes[2])
axes[3].hist(pea.ravel(),bins=200);
axes[4].hist(Cp.ravel(),bins=200);
axes[5].hist(Ap.ravel(),bins=200);

0.10.7 Compare the orientations globally

fig,ax = plt.subplots(2,2,figsize=(12,8))
ax=ax.ravel()
ax[0].imshow(hair,cmap='gray')
t = ax[0].text(300,200, "Direction",

ha="center", va="center", rotation=0, size=15,
bbox=dict(boxstyle="rarrow,pad=0.3",

fc="lightblue", ec="steelblue", lw=2))
ax[1].imshow(pea,cmap='gray');
t = ax[1].text(400,370, "Direction",

ha="center", va="center", rotation=40, size=15,
bbox=dict(boxstyle="rarrow,pad=0.3",

fc="lightblue", ec="steelblue", lw=2))

hh=ax[2].hist(Ah.ravel(),bins=200);
hhm=medfilt(hh[0],9)

(continues on next page)

54 CONTENTS

Quantitative Big Imaging - Image enhancement

(continued from previous page)

ap=hh[1][np.argmax(hhm)]
ax[2].axvline(x=ap, color='r')
ax[2].set_xticks([-np.pi/2,-np.pi/4,0,np.pi/4,np.pi/2])
ax[2].set_xticklabels([r'$-\frac{\pi}{2}$',r'$-\frac{\pi}{4}$',0,r'$\frac{\pi}{4}$',r'

↪$\frac{\pi}{2}$']);

hp=ax[3].hist(Ap.ravel(),bins=200);
hpm=medfilt(hp[0],9)
ap=hp[1][np.argmax(hpm)]
ax[3].axvline(x=ap, color='r')
ax[3].set_xticks([-np.pi/2,-np.pi/4,0,np.pi/4,np.pi/2])
ax[3].set_xticklabels([r'$-\frac{\pi}{2}$',r'$-\frac{\pi}{4}$',0,r'$\frac{\pi}{4}$',r'

↪$\frac{\pi}{2}$']);

0.10.8 Compare orientations locally

In both cases, we see that the global orientation is unable to capture that there are local variations. Now, let’s take a look
at the local histograms in some regions of the peacock feather.

fig,ax = plt.subplots(2,3,figsize=(15,8))
ax=ax.ravel()
ax[0].axis('off')
ax[2].axis('off')
ax[1].imshow(Ap,cmap='twilight')

ax[3].hist(Ap[400:500,0:100].ravel(),bins=100);

(continues on next page)

0.10. Enhancing and analyzing orientation 55

Quantitative Big Imaging - Image enhancement

(continued from previous page)

ax[3].set_xticks([-np.pi/2,-np.pi/4,0,np.pi/4,np.pi/2])
ax[3].set_xticklabels([r'$-\frac{\pi}{2}$',r'$-\frac{\pi}{4}$',0,r'$\frac{\pi}{4}$',r'

↪$\frac{\pi}{2}$'])

ax[4].hist(Ap[550:650,200:300].ravel(),bins=100);
ax[4].set_xticks([-np.pi/2,-np.pi/4,0,np.pi/4,np.pi/2])
ax[4].set_xticklabels([r'$-\frac{\pi}{2}$',r'$-\frac{\pi}{4}$',0,r'$\frac{\pi}{4}$',r'

↪$\frac{\pi}{2}$'])

ax[5].hist(Ap[150:250,550:650].ravel(),bins=100);
ax[5].set_xticks([-np.pi/2,-np.pi/4,0,np.pi/4,np.pi/2])
ax[5].set_xticklabels([r'$-\frac{\pi}{2}$',r'$-\frac{\pi}{4}$',0,r'$\frac{\pi}{4}$',r'

↪$\frac{\pi}{2}$'])

rect3 = plt.Rectangle((0,400), 100, 100, facecolor="yellow", alpha=0.5,ec="yellow")
ax[1].add_patch(rect3)

rect4 = plt.Rectangle((200,550), 100, 100,
facecolor="yellow", alpha=0.5,ec="yellow")

ax[1].add_patch(rect4)

rect5 = plt.Rectangle((550,150), 100, 100, facecolor="yellow", alpha=0.5,ec="yellow")
ax[1].add_patch(rect5)

con3 = ConnectionPatch(xyA=(0,150), xyB=(50,450),
coordsA="data", coordsB="data",
axesA=ax[3], axesB=ax[1],
color="crimson", lw=3)

ax[1].add_artist(con3)

con4 = ConnectionPatch(xyA=(0,150), xyB=(250,600),
coordsA="data", coordsB="data",
axesA=ax[4], axesB=ax[1],
color="crimson", lw=3)

ax[1].add_artist(con4)

con5 = ConnectionPatch(xyA=(0,250), xyB=(600,200),
coordsA="data", coordsB="data",
axesA=ax[5], axesB=ax[1],
color="crimson", lw=3)

ax[1].add_artist(con5);

56 CONTENTS

Quantitative Big Imaging - Image enhancement

Quantifying local orientations

It is mostly not relevant to observe the orientation per pixel, but rather in a region.
How can we get the region information

• We saw that there is a uniformly distributed bias in the angles
• The avagerage will be misleading, use max of histogram.

def local_angle(img, w) :
res=np.zeros([1+img.shape[0]//w,1+img.shape[1]//w])

for rr,r in enumerate(np.arange(0,img.shape[0],w)) :
for rc,c in enumerate(np.arange(0,img.shape[1],w)) :

h,a = np.histogram(img[r:r+w,c:c+w].ravel(),bins=w)
h=medfilt(h)
res[rr,rc]= a[np.argmax(h)]

return res

Compute the local orientation on the peacock feather

Compute the average angle in a window w
w=100
Ap_avg = local_angle(Ap,w)

Compute positions
r,c = np.meshgrid(np.arange(0,Ap_avg.shape[0])*w+w/2,np.arange(0,Ap_avg.shape[1]-

↪1)*w+w/2)
Compute the vectors
u = np.cos(Ap_avg[:,:-1])
v = np.sin(Ap_avg[:,:-1])

0.10. Enhancing and analyzing orientation 57

Quantitative Big Imaging - Image enhancement

fig,ax = plt.subplots(1,2,figsize=(12,3.5))

a = ax[0].imshow(Ap_avg,clim=[-np.pi/2, np.pi/2],cmap='twilight')
ax[0].set_title('Local orientation angles')
fig.colorbar(a,ax=ax[0])
m,s=pea.mean(), pea.std()
a1=ax[1].imshow(pea,clim=[m-2*s,m+2*s])
fig.colorbar(a1,ax=ax[1])
ax[1].quiver(c,r, u,v, color='red');
ax[1].set_title('Orientations as vector field');

0.11 Verification

0.11.1 How good is my filter?

0.11.2 Verify the correctness of the method

“Data massage”

Filtering manipulates the data, avoid too strong modifications otherwise you may invent new image features!!!

Fig. 1: Be careful when you apply different filters. You may make to great modifications.

58 CONTENTS

Quantitative Big Imaging - Image enhancement

Verify the validity your method

• Visual inspection
• Difference images
• Use degraded phantom images in a “smoke test”

0.11.3 Verification using difference images

Compute pixel-wise difference between image 𝑓 and 𝑔
Difference images provide first diagnosis about processing performance

0.11.4 Performance testing - The smoke test

• Testing term from electronic hardware testing - drive the system until something fails due to overheating…
• In general: scan the parameter space for different SNR until the method fails to identify strength and weakness of
the system.

Test strategy

1. Create a phantom image with relevant features.
2. Add noise for different SNR to the phantom.
3. Apply the processing method with different parameters.
4. Measure the difference between processed and phantom.
5. Repeat steps 2-4 𝑁 times for better test statistics.
6. Plot the results and identify the range of SNR and parameters that produce acceptable results.

0.11.5 Data for evaluation - Phantom data

General purpose can be controlled
• Data with known features.
• Parameters can be changed.

– Shape
– Sharpness
– Contrast
– Noise (distribution and strength)

0.11. Verification 59

Quantitative Big Imaging - Image enhancement

Fig. 2: The shepp logan phantom.

Fig. 3: A simulated root network.

60 CONTENTS

Quantitative Big Imaging - Image enhancement

0.11.6 Data for evaluation - Labelled data

Often ‘real’ data
• Labeled by experts
• Used for training and validation

– Training of model
– Validation
– Test

Fig. 4: Images of hand written numbers from the MNIST data base.

0.11. Verification 61

Quantitative Big Imaging - Image enhancement

0.11.7 Evaluation metrics for gray level images

An evaluation procedure needs a metric to compare the performance

Mean squared error

𝑀𝑆𝐸(𝑓, 𝑔) = ∑
𝑝∈Ω

(𝑓(𝑝) − 𝑔(𝑝))2

Structural similarity index

𝑆𝑆𝐼𝑀(𝑓, 𝑔) = (2𝜇𝑓 𝜇𝑔 +𝐶1)(2𝜎𝑓𝑔 +𝐶2)
(𝜇2

𝑓 + 𝜇2𝑔 +𝐶1)(𝜎2
𝑓 + 𝜎2𝑔 +𝐶2)

• 𝜇𝑓 , 𝜇𝑔 Local mean of 𝑓 and 𝑔.
• 𝜎𝑓𝑔 Local correlation between 𝑓 and 𝑔.
• 𝜎𝑓 , 𝜎𝑔 Local standard deviation of 𝑓 and 𝑔.
• 𝐶1, 𝐶2 Constants based on the image dynamics (small numbers).

𝑀𝑆𝑆𝐼𝑀(𝑓, 𝑔) = 𝐸[𝑆𝑆𝐼𝑀(𝑓, 𝑔)]

Wang 2009

0.11.8 Test run example

Runnig tests with different structure sizes and SNR.

Phantom structure sizes

1 2 4 8

62 CONTENTS

https://doi.org/10.1109/MSP.2008.930649

Quantitative Big Imaging - Image enhancement

Change SNR and contrast

𝜎=1 𝜎=2 𝜎=5 𝜎=10

Process

Plot results

R=1 R=2 R=4 R=8

Kaestner et al. 2006

0.12 Overview

0.12.1 Many filters

0.12.2 Details of filter performance

0.12.3 Take-home message

We have looked at different ways to suppress noise and artifacts:
• Convolution
• Median filters
• Wavelet denoising
• PDE filters

Which one you select depends on
• Purpose of the data
• Quality requirements

0.12. Overview 63

https://doi.org/10.1016/j.geoderma.2006.04.009

Quantitative Big Imaging - Image enhancement

SNR=10

Original

SNR=100

SNR=1

SNR=inf, Box 5x5
 MSE=564.8, SSIM=0.868

SNR=100, Box 5x5
 MSE=565.0, SSIM=0.863

SNR=10, Box 5x5
 MSE=590.4, SSIM=0.654

SNR=1, Box 5x5
 MSE=3151.8, SSIM=0.134

SNR=inf, Median 5x5
 MSE=33.8, SSIM=0.994

SNR=100, Median 5x5
 MSE=34.1, SSIM=0.985

SNR=10, Median 5x5
 MSE=114.4, SSIM=0.673

SNR=1, Median 5x5
 MSE=4794.3, SSIM=0.113

SNR=inf, Wavelet
 MSE=0.0, SSIM=1.000

SNR=100, Wavelet
 MSE=5.6, SSIM=0.970

SNR=10, Wavelet
 MSE=195.7, SSIM=0.602

SNR=1, Wavelet
 MSE=4765.8, SSIM=0.119

SNR=inf, NL Diffusion
 MSE=2.4, SSIM=0.997

SNR=100, NL Diffusion
 MSE=3.0, SSIM=0.991

SNR=10, NL Diffusion
 MSE=50.8, SSIM=0.917

SNR=1, NL Diffusion
 MSE=6664.2, SSIM=0.3

SNR=inf, ISS TV2
 MSE=14.7, SSIM=0.951

SNR=100, ISS TV2
 MSE=0.6, SSIM=0.996

SNR=10, ISS TV2
 MSE=43.3, SSIM=0.832

SNR=1, ISS TV2
 MSE=1301.8, SSIM=0.495

Fig. 1: All filters form the lecture for different SNR.

64 CONTENTS

Quantitative Big Imaging - Image enhancement

SNR=10

Original

SNR=100

SNR=1

SNR=inf, Box 5x5
 MSE=564.8, SSIM=0.868

SNR=100, Box 5x5
 MSE=565.0, SSIM=0.863

SNR=10, Box 5x5
 MSE=590.4, SSIM=0.654

SNR=1, Box 5x5
 MSE=3151.8, SSIM=0.134

SNR=inf, Median 5x5
 MSE=33.8, SSIM=0.994

SNR=100, Median 5x5
 MSE=34.1, SSIM=0.985

SNR=10, Median 5x5
 MSE=114.4, SSIM=0.673

SNR=1, Median 5x5
 MSE=4794.3, SSIM=0.113

SNR=inf, Wavelet
 MSE=0.0, SSIM=1.000

SNR=100, Wavelet
 MSE=5.6, SSIM=0.970

SNR=10, Wavelet
 MSE=195.7, SSIM=0.602

SNR=1, Wavelet
 MSE=4765.8, SSIM=0.119

SNR=inf, NL Diffusion
 MSE=2.4, SSIM=0.997

SNR=100, NL Diffusion
 MSE=3.0, SSIM=0.991

SNR=10, NL Diffusion
 MSE=50.8, SSIM=0.917

SNR=1, NL Diffusion
 MSE=6664.2, SSIM=0.3

SNR=inf, ISS TV2
 MSE=14.7, SSIM=0.951

SNR=100, ISS TV2
 MSE=0.6, SSIM=0.996

SNR=10, ISS TV2
 MSE=43.3, SSIM=0.832

SNR=1, ISS TV2
 MSE=1301.8, SSIM=0.495

Fig. 2: A close-up of all filters form the lecture for different SNR.

0.12. Overview 65

Quantitative Big Imaging - Image enhancement

• Available time
Filters can also be used to provide quantitative information

66 CONTENTS

	Image Enhancement
	Todays lecture
	Literature
	Basic filters
	Orientations

	We need some modules

	Measurements are rarely perfect
	Factors affecting the image quality
	Resolution
	Noise
	Contrast
	Inhomogeneous contrast
	Artifacts

	A typical processing chain

	Noise and artifacts
	Noise types
	Noise models - Gaussian noise
	Noise models - Poisson noise
	Compare Gaussian and Possion noise
	Noise models - Salt’n’pepper noise
	Salt’n’pepper examples

	Signal to noise ratio
	Signal to noise ratio for Poisson noise

	Useful python functions
	Random number generators [numpy.random]
	Statistics

	Basic filtering
	What is a filter?
	General definition

	Filter characteristics
	Low-pass filters
	High-pass filters

	Basic filters
	Linear filters
	Low-pass filter kernels
	Different SNR using a Gauss filter
	How is the convolution computed
	Euclidean separability
	Examples of separable kernels
	Gain of using separable kernels

	The median filter
	Comparing filters for different noise types
	Filter example: Spot cleaning
	Spot cleaning algorithm
	Spot cleaning - Compare performance
	The ImageJ ways for outlier removal

	High-pass filters
	Typical high-pass filters:
	Sobel - Magnitude of grandient

	Gradient example - structure orientation
	Edge detection examples
	Relevance of filters to machine learning

	Frequency space filters
	Applications of the Fourier transform
	The Fourier transform
	FFT (Fast Fourier Transform)

	Some mathematical features of the FT
	Additition
	Convolution

	Additive noise in Fourier space
	Convolution in Fourier space
	Wiener filter in Fourier space
	Special case of the Wiener filter
	Demonstration of the Wiener filter in AWGN

	Spatial frequencies and orientation
	Example - Stripe removal in Fourier space
	The effect of the stripe filter
	Technical details on Fourier space filters
	When should you use convolution in Fourier space?
	Zero padding

	Python functions
	Filters in the spatial domain
	Fourier transform
	Complex numbers

	Scale spaces
	Why scale spaces?
	Motivation
	The solution

	Wavelets - the basic idea
	Applications of wavelets

	Wavelet transform of a 1D signal
	Wavelet transform of an image
	Wavelet transform of an image - example
	Using wavelets for noise reduction
	Wavelet noise reduction - Image example
	Python functions for wavelets

	Parameterized scale spaces
	PDE based scale space filters
	The starting point
	Controlling the diffusivity
	Gradient controlled diffusivity
	The non-linear diffusion filter
	Diffusion filter example
	Filtering as a regularization problem
	The continued development

	The inverse scale space filter
	The idea
	The ISS filter - Some properties
	The ROF filter equation
	Filter iterations
	How to choose lambda and alpha
	Initial conditions:
	Experiment:

	Solutions at different times
	Solution time
	The choice of initial image

	Non-local means
	Non-local smoothing
	The idea

	Filter definition
	Non-local means 2D - Example
	Observations

	Performance complications
	Problem
	Solution

	Explore the Non-local means in more detail

	Enhancing and analyzing orientation
	Gradients
	How about the Fourier transform?
	The structure tensor
	Implementing the structure tensor
	Looking at the components of the structure tensor

	Local eigen-value analysis of the structure tensor
	The coherency - C
	Looking at the coherency

	Local orientation angle
	Local orientations of the balls

	Images with line textures
	Struture tensor the hair image
	Structure tensor of the peacock feather

	Compare the orientations globally
	Compare orientations locally
	Quantifying local orientations
	Compute the local orientation on the peacock feather

	Verification
	How good is my filter?
	Verify the correctness of the method
	“Data massage”
	Verify the validity your method

	Verification using difference images
	Performance testing - The smoke test
	Test strategy

	Data for evaluation - Phantom data
	Data for evaluation - Labelled data
	Evaluation metrics for gray level images
	Mean squared error
	Structural similarity index

	Test run example
	Phantom structure sizes
	Change SNR and contrast
	Process
	Plot results

	Overview
	Many filters
	Details of filter performance
	Take-home message

