
Quantitative Big Imaging - Building and
Augmenting Datasets

Anders Kaestner

May 11, 2023

CONTENTS

0.1 Ground Truth: Building and Augmenting Datasets . 1
0.2 Famous Datasets . 6
0.3 Purpose of different types of Datasets . 12
0.4 Building your own data sets . 18
0.5 Dataset Problems . 20
0.6 Augmentation . 24
0.7 Baselines . 29
0.8 Data frames - managing feature tables . 43
0.9 Summary . 53

i

ii

Quantitative Big Imaging - Building and Augmenting Datasets

This is the lecture notes for the 2nd lecture of the Quantitative big imaging class given during the spring semester 2022
at ETH Zurich, Switzerland.

0.1 Ground Truth: Building and Augmenting Datasets

Quantitative Big Imaging ETHZ: 227-0966-00L

0.1.1 Today’s lecture

Creating Datasets
• Famous Datasets
• Types of Datasets
• What makes a good dataet?
• Building your own
• “scrape, mine, move, annotate, review, and preprocess” - Kathy Scott
• tools to use
• simulation

Augmentation
• How can you artifically increase the size of your dataset?
• What are the limits of these increases

Baselines
• What is a baseline?
• Example: Nearest Neighbor

0.1.2 Let’s load some modules for the notebook

import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import skimage as ski
import skimage.io as io
from skimage.morphology import disk
import scipy.ndimage as ndimage
from keras.datasets import mnist
import tensorflow_datasets as tfds
from skimage.util import montage as montage2d

%matplotlib inline
mpl.rcParams['figure.dpi'] = 100

0.1. Ground Truth: Building and Augmenting Datasets 1

Quantitative Big Imaging - Building and Augmenting Datasets

ModuleNotFoundError Traceback (most recent call last)
Cell In[1], line 9

7 import scipy.ndimage as ndimage
8 from keras.datasets import mnist

----> 9 import tensorflow_datasets as tfds
10 from skimage.util import montage as montage2d
12 get_ipython().run_line_magic('matplotlib', 'inline')

ModuleNotFoundError: No module named 'tensorflow_datasets'

0.1.3 References

• Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
• Data science … without any data
• Building Datasets

– Python Machine Learning 2nd Edition by Sebastian Raschka, Packt Publishing Ltd. 2017
– Chapter 2: Building Good Datasets:
– A Standardised Approach for Preparing Imaging Data for Machine Learning Tasks in Radiology

• Creating Datasets / Crowdsourcing
• Mindcontrol: A web application for brain segmentation quality control
• Combining citizen science and deep learning to amplify expertise in neuroimaging
• Augmentation tools
• ImgAug
• Augmentor

0.1.4 Motivation

Why other peoples data?
Most of you taking this class are rightfully excited to learn about new tools and algorithms to analyzing your data.
This lecture is a bit of an anomaly and perhaps disappointment because it doesn’t cover any algorithms, or tools.

• You might ask, why are we spending so much time on datasets?
• You already collected data (sometimes lots of it) that is why you took this class?!

… let’s see what some other people say

2 CONTENTS

https://arxiv.org/abs/1707.02968
https://towardsdatascience.com/data-science-without-any-data-6c1ae9509d92
https://github.com/rasbt/python-machine-learning-book-2nd-edition/blob/master/code/ch04/ch04.ipynb
https://doi.org/10.1007/978-3-319-94878-2_6
https://www.sciencedirect.com/science/article/pii/S1053811917302707
https://www.biorxiv.org/content/10.1101/363382v1.abstract
https://github.com/aleju/imgaug
https://github.com/mdbloice/Augmentor

Quantitative Big Imaging - Building and Augmenting Datasets

Sean Taylor (Research Scientist at Facebook)

This tweet tells us that you shouldn’t put too much belief in AI without providing carefully prepared data set. Machine
learning methods perform only so good as the data it was trained with. You need a data set that covers all extremes of the
fenomena that you want to model.

Fig. 1: Realistic thoughts about AI.

Andrej Karpathy (Director of AI at Tesla)

This slide by Andrej Karpathy shows the importance of correct data set in a machine learning project. Typically, you
should spend much more time on collecting representative data for your models than building the models. Unfortunately,
this is not the case for many PhD projects where the data usually is scarse. Much for the reason that it is really hard to
come by the data. You may only have a few beam slots allocated for your experiments and this is the data you have to
live with.

0.1. Ground Truth: Building and Augmenting Datasets 3

Quantitative Big Imaging - Building and Augmenting Datasets

Fig. 2: Time spent on different tasks.

4 CONTENTS

Quantitative Big Imaging - Building and Augmenting Datasets

Kathy Scott (Image Analytics Lead at Planet Labs)

Yet another tweet that implies that many data scientist actually spend more time on preparing the data than developing
new models. The training is less labor demanding, the computer is doing that part of the job.

Fig. 3: The importance to spend sufficient time on data preparation.

0.1. Ground Truth: Building and Augmenting Datasets 5

Quantitative Big Imaging - Building and Augmenting Datasets

0.1.5 Data is important

It probably isn’t the new oil, but it forms an essential component for building modern tools today.
Testing good algorithms requires good data

• If you don’t know what to expect – how do you know your algorithm worked?
• If you have dozens of edge cases – how can you make sure it works on each one?
• If a new algorithm is developed every few hours – how can you be confident they actually work better?
Facebook’s site has a new version multiple times per day and their app every other day

For machine learning, even building algorithms requires good data
• If you count cells maybe you can write your own algorithm,
• but if you are trying to detect

– subtle changes in cell structure
– that indicate canceryou probably can’t write a list of simple mathematical rules yourself.

0.1.6 Data is reusable

• Well organized and structured data is very easy to reuse.
• Another project can easily combine your data with their data in order to get even better results.

Algorithms are often only prototypes
• messy,
• complicated,
• poorly written,

… especially so if written by students trying to graduate on time.
Data recycling saves time and improves performance

0.2 Famous Datasets

The primary success of datasets has been shown through the most famous datasets collected.
Here I show

• Two of the most famous general datasets
– MNIST Digits
– ImageNET

• and one of the most famous medical datasets.
– BRATS

The famous datasets are important for basic network training.

6 CONTENTS

https://www.forbes.com/sites/bernardmarr/2018/03/05/heres-why-data-is-not-the-new-oil/

Quantitative Big Imaging - Building and Augmenting Datasets

0.2.1 MNIST Digits

Modified NIST (National Institute of Standards and Technology) created a list of handwritten digits.
This list is a popular starting point for many machine learning projects. The images are already labeled and are also nicely
prepared to about the same size and also very high SNR. These properties makes it a great toy data set for first testing.

Fig. 1: A selection of hand written numbers from the MNIST data base

0.2.2 ImageNet

• ImageNet is an image database
– organized according to the WordNet hierarchy (currently only the nouns),
– each node of the hierarchy is depicted by hundreds and thousands of images.

• 1000 different categories and >1M images.
• Not just dog/cat, but wolf vs german shepard,

Fig. 2: Hierarchial structure of the WordNet database.

CNN architectures

0.2. Famous Datasets 7

https://medium.com/analytics-vidhya/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5

Quantitative Big Imaging - Building and Augmenting Datasets

Fig. 3: Error rates for different classifiers on the same data set.

0.2.3 BRATS

Segmenting Tumors in Multimodal MRI Brain Images.

0.2.4 What story did these datasets tell?

Each of these datasets is very different from images with fewer than 1000 pixels to images with more than 100MPx, but
what they have in common is how their analysis has changed.
All of these datasets used to be analyzed by domain experts with hand-crafted features.

• A handwriting expert using graph topology to assign images to digits
• A computer vision expert using gradients common in faces to identify people in ImageNet
• A biomedical engineer using knowledge of different modalities to fuse them together and cluster healthy and tu-
morous tissue

Starting in the early 2010s, the approaches of deep learning began to improve and become more computationally effi-
cient. With these techniques groups with absolutely no domain knowledge could begin building algorithms and winning
contests based on these datasets.
All of these datasets used to be analyzed by domain experts with hand-crafted features.

• A handwriting expert using graph topology
• A computer vision expert to identify people in ImageNet
• A biomedical engineer cluster healthy and tumorous tissue
• the approaches of deep learning began to improve and become more computationally efficient.
• groups with absolutely no domain knowledge could winning contests based on datasets

8 CONTENTS

Quantitative Big Imaging - Building and Augmenting Datasets

Fig. 4: Images of brain tumors from the BRATS database.

Fig. 5: Domain experts use their experience to analyze data

Fig. 6: Data scientist don’t have domain specific knowledge, they use available data for the analysis.

0.2. Famous Datasets 9

Quantitative Big Imaging - Building and Augmenting Datasets

0.2.5 So Deep Learning always wins?

No, that isn’t the point of this lecture.
Even if you aren’t using deep learning the point of these stories is having

• well-labeled,
• structured,
• and organized datasets

makes your problem a lot more accessible for other groups and enables a variety of different approaches to be tried.
Ultimately it enables better solutions to be made and you to be confident that the solutions are in fact better.

How to work with someone else’s data

Inherited datasets are like inherited toothbrushes: using them is an act of desperation.
Collecting your own data is a luxury not everyone can afford.
Inherited data are easier to get but harder to trust.

C. Kozyrkov, 2020

The FAIR principle

Open data is a central requirement these days.
• F indable
• A ccessible
• I nteroperable
• R eusable

Wilkinson et al. 2016

PaNOSC

The Photon and Neutron Open Science Cloud (PaNOSC)

0.2.6 Other Datasets

• Grand-Challenge.org a large number of challenges in the biomedical area
• Kaggle Datasets
• Google Dataset Search
• Wikipedia provides a comprehensive list categorized into different topics

10 CONTENTS

https://towardsdatascience.com/how-to-work-with-someone-elses-data-f33485d79ed4
https://doi.org/10.1038/sdata.2016.18
https://www.panosc.eu
http://Grand-Challenge.org
https://www.kaggle.com/datasets
https://datasetsearch.research.google.com/
https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research

Quantitative Big Imaging - Building and Augmenting Datasets

0.2.7 What makes a good dataset?

A good data set is characterized by
• Large amount
• Diversity
• Annotations

This means that…

Lots of images

• Small datasets can be useful, but here the bigger the better
• Particularly if you have:

– Complicated problems
– Very subtle differencesa lung tumor looks mostly like normal lung tissue, but it is in a place it shouldn’t be
– Class imbalance

Lots of diversity

• Is it what data ‘in the wild’ really looks like?
• Lots of different

– Scanners/reconstruction algorithms,
– noise levels,
– illumination types,
– rotation,
– colors, …

• Many examples from different categories
If you only have one male with breast cancer,it will be hard to generalize exactly what that looks like

Meaningful labels

• Clear task or question
• Unambiguous

– Would multiple different labelers come to the same conclusion

• Non-obvious
– A label saying an image is bright is not a helpful label because you could look at the histogram and say that

• Able to be derived from the image alone
– A label that someone cannot afford insurance is interesting but it would be nearly impossible to determine that
from an X-ray of their lungs

• Quantiative!

0.2. Famous Datasets 11

Quantitative Big Imaging - Building and Augmenting Datasets

0.3 Purpose of different types of Datasets

• Classification
• Regression
• Segmentation
• Detection
• Other

0.3.1 Classification

Fig. 1: Classification example with cats and dogs.

• Taking an image and putting it into a category
• Each image should have exactly one category
• The categories should be non-ordered
• Example:
• Cat vs Dog
• Cancer vs Healthy

12 CONTENTS

Quantitative Big Imaging - Building and Augmenting Datasets

Classification example

In classification you want to observe an image an quickly provide it with a category. Like in the MNIST example which
is designed for recognition of handwritten numbers. Each image has a label telling which number it represents.

ds, info = tfds.load('mnist', split='train', with_info=True)

fig = tfds.show_examples(ds, info)

2023-03-01 13:36:07.838626: W tensorflow/core/kernels/data/cache_dataset_ops.
↪cc:856] The calling iterator did not fully read the dataset being cached. In␣
↪order to avoid unexpected truncation of the dataset, the partially cached␣
↪contents of the dataset will be discarded. This can happen if you have an input␣
↪pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.
↪take(k).cache().repeat()` instead.

0.3. Purpose of different types of Datasets 13

Quantitative Big Imaging - Building and Augmenting Datasets

0.3.2 Regression

Regression almost looks like classification at first sight. You still want to put a number related to the image content. But
here it is not strictly bound to the provided categories but rather estimating a value which can be found on the regression
line fitted to the data.
Taking an image and predicting one (or more) decimal values

• Examples:
• Value of a house from the picture taken by owner
• Risk of hurricane from satellite image

Regression example Age from X-Rays

This dataset contains a collection of X-ray radiographs of hands. The purpose of the data is to estimate the age of a child
based on the radiograph. This can be done using a regression model.
More details

0.3.3 Segmentation

• Taking an image and predicting one (or more) values for each pixel
• Every pixel needs a label (and a pixel cannot have multiple labels)
• Typically limited to a few (less than 20) different types of objects

Segmnetation examples:

• Where a tumor is from an image of the lungs?
• Where streets are from satellite images of a neighborhood?
• Where are the cats and dogs?

Segmentation example: Nuclei in Microscope Images

More details on Kaggle

0.3.4 Detection

Detection is a combination of segmenation and classification in the sense that the location and extents of a feature is
determined and is also categorized into some class. The extents don’t have to be very precise, it is often a bounding box
or a convex hull. This coarseness is sufficient for many applications.

• Taking an image and predicting where and which type of objects appear
• Generally bounding box rather than specific pixels
• Multiple objects can overlap

14 CONTENTS

https://www.kaggle.com/kmader/attention-on-pretrained-vgg16-for-bone-age
https://www.kaggle.com/c/data-science-bowl-2018

Quantitative Big Imaging - Building and Augmenting Datasets

Fig. 2: A collection of X-ray images from children at different ages.

Fig. 3: Sample with cells.

0.3. Purpose of different types of Datasets 15

Quantitative Big Imaging - Building and Augmenting Datasets

Fig. 4: Labelled cells.

Fig. 5: Radiographs to detect opaque regions in X-Rays

16 CONTENTS

Quantitative Big Imaging - Building and Augmenting Datasets

Detection example: Opaque Regions in X-Rays

In this example the task is to detect opaque regions in lung X-ray images to provide a first indication for the physician
who should make a diagnosis from the images. The used algorithm marks rectangles on region that are too opaque to be
healthy.

Fig. 6: Critical regions detected in lung radiographs.

More details on Kaggle

0.3.5 Other

• Unlimited possibilities here
• Horses to Zebras

Image Enhancement

• Denoising Learning to See in the Dark
• Super-resolution

0.3. Purpose of different types of Datasets 17

https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
https://junyanz.github.io/CycleGAN/
http://cchen156.web.engr.illinois.edu/SID.html
https://data.vision.ee.ethz.ch/cvl/DIV2K/

Quantitative Big Imaging - Building and Augmenting Datasets

0.4 Building your own data sets

Finally, we arrive at your data! As you already have seen, it is a time consuming and labor intense task to collect and
prepare data.

• Very time consuming
• Not a lot of great tools
• Very problem specific

It is however important to have well-organized data for the analysis.

0.4.1 Code-free

Classification

• Organize images into folders

Regression

• Create an excel file (first column image name, next columns to regress)

Segmentation / Object Detection

• Take FIJI or any paint application and manually draw region to be identified and save it as a grayscale image

0.4.2 Software for data labelling

Free tools

• Classification / Segmentation
• Classification/ Object Detection
• Classification (demo)
• Classification/ Detection
• Classification (Tinder for Brain MRI)

Commercial Approaches

• https://www.figure-eight.com/
• MightyAI / Spare5: https://mighty.ai/ https://app.spare5.com/fives/sign_in

18 CONTENTS

http://fiji.sc/
https://github.com/Labelbox/Labelbox
http://labelme.csail.mit.edu/Release3.0/
https://github.com/janfreyberg/superintendent
https://www.youtube.com/watch?v=fMg0mPYiEx0
https://github.com/chestrays/jupyanno
https://braindr.us/#/
https://www.figure-eight.com/
https://mighty.ai/
https://app.spare5.com/fives/sign_in

Quantitative Big Imaging - Building and Augmenting Datasets

Example: annotation of spots

Spots are outliers in radiography and very annoying when the images are used for tomography.

Fig. 1: Annotation of spot in a neutron radiograph.

• Image size 2048x2048
• Tools

– Bitmap painting application
– Drawing tablet

• Time to markup 8h

0.4.3 Simulations

A further way to increase training data is to build a model of the features you want to train on. This approach has the
advantage that you know where to look for the features which means the tedious annotation task is reduced to a minimum.
The work rather lies in building a relieable model that should reflect the characteristics of features you want to segments.
Once a valid model is built, it is easy to generate masses of data under variuos conditions.
Simulations can be done using:

• Geometric models
• Template models
• Physical models

Both augmented and simulated data should be combined with real data.

Simulation examples

Another way to enhance or expand your dataset is to use simulations
• already incorporate realistic data (game engines, 3D rendering, physics models)
• 100% accurate ground truth (original models)
• unlimited, risk-free playability (driving cars in the world is more dangerous)

0.4. Building your own data sets 19

Quantitative Big Imaging - Building and Augmenting Datasets

Examples

• P. Fuchs et al. - Generating Meaningful Synthetic Ground Truth for Pore Detection in Cast Aluminum Parts, iCT
2019, Padova

• Playing for Data: Ground Truth from Computer Games
• Self-driving car
• Learning from simulated data

0.5 Dataset Problems

Some of the issues which can come up with datasets are
• imbalance
• too few examples
• too homogenous
• and other possible problems

These lead to problems with the algorithms built on top of them.

0.5.1 Bias

Working with single sided data will bias the model towards this kind of data. This is a reason for the need to include as
many corner cases as possible in the data. Biasing can easily happen when you have too few data to provide a statistically
well founded training.
The gorilla example may sound fun but it can also upset people and in some cases the wrong descision can even cause
inrepairable damage. Google’s quick fix to the problem was to remove the gorilla category from their classifyer. This
approach may work for a trivial service like picture categorization tool, but yet again what if it is an essential category for
the model?
The solution was to remove Gorilla from the category

A better solution to avoid biasing

Use training sets with more diverse people
The better solution to avoid biasing mistakes is to use a large data base with more variations one example is the IBM
Diverse Face Dataset. This face dataset not only provides great variation in people but also adds features to categorize
the pictures even further. The figure below shows some samples from the face dataset with categories like:

• Accessories like eyeglases and hats
• Different hair styles
• Face shapes
• Face expressions

IBM Diverse Face Dataset

20 CONTENTS

https://pdfs.semanticscholar.org/30a1/ba9142b9c3b755da2bff7d93d704494fdaed.pdf
https://pdfs.semanticscholar.org/30a1/ba9142b9c3b755da2bff7d93d704494fdaed.pdf
https://download.visinf.tu-darmstadt.de/data/from_games/
https://pythonprogramming.net/self-driving-car-neural-network-training-data-python-plays-gta-v/
https://towardsdatascience.com/learning-from-simulated-data-ff4be63ac89c
https://www.theverge.com/2018/1/12/16882408/google-racist-gorillas-photo-recognition-algorithm-ai
https://www.research.ibm.com/artificial-intelligence/trusted-ai/diversity-in-faces/
https://www.research.ibm.com/artificial-intelligence/trusted-ai/diversity-in-faces/

Quantitative Big Imaging - Building and Augmenting Datasets

Fig. 1: Mistakes that can happen due bias caused by insufficent training data.

0.5.2 Image data and labels

In the prevoius example with face pictures we started to look into categories of pictures. These pictures were provided
with labels bescribing the picture content. The next dataset we will look at is the MNIST data set, which we already have
seen a couple of times in this lecture.
In the example below we have extracted the numbers 1,2, and 3. The histogram to the right shows the distribution of the
numbers in the extracted data set.

(img,label),_=mnist.load_data()

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 4))
d_subset = np.where(np.in1d(label, [1, 2, 3]))[0]

Visualization
ax1.imshow(montage2d(img[d_subset[:64],:,:]), cmap='gray'), ax1.set_title('Images'),␣

↪ax1.axis('off')
ax2.hist(label[d_subset[:64]], np.arange(11)), ax2.set_title('Digit␣

↪Distribution');

0.5. Dataset Problems 21

Quantitative Big Imaging - Building and Augmenting Datasets

Fig. 2: Use a database with more diverse people to avoid biasing.

22 CONTENTS

Quantitative Big Imaging - Building and Augmenting Datasets

0.5.3 Limited data

Machine learning methods require a lot of training data to be able to build good models that are able to detect the features
they are intended to.
Different types of limited data:

• Few data points or limited amounts of images
This is very often the case in neutron imaging. The number of images collected during an experiment session is often very
low due to the long experiment duration and limited amount of beam time. This makes it hard to develop segmentation
and analysis methods for single experiments. The few data points problem can partly be overcome by using data from
previous experiment with similar characteristics. The ability to recycle data depends on what you want to detect in the
images.

• Unbalanced data
Unbalanced data means that the ratio between the data points with features you want detect and the total number data
points is several orders of magnitude. E.g roots in a volume like the example we will look at later in this lecture. There
is even a risk that the distribution of the wanted features is overlapped by the dominating background distribution.

(a) (b)

Background
Features
Observed

Fig. 3: Two cases of unblanaced data; (a) the classes are well separated and the feature class is clearly visible in the tail
distribution of the background and (b) the feature class is embeded in the background making it hard to detect.

Case (a) canmost likely be segmented using one of themany histogram based thresholdingmethods proposed in literature.
Case (b) is much harder to segment as the target features have similar gray levels as the background. This case requires
additional information to make segmentation posible.

• Little or missing training data
A complete set of training data contains both input data and labelled data. The input data is easy to obtain, it is the images
you measured during your experiment. The labelled data is harder to get as it is a kind of chicken and egg problem. In
particular, if your experiment data is limited. In that case, you would have to mark-up most of the available data to obtain
the labeled data. Which doesn’t make sense because

0.5. Dataset Problems 23

Quantitative Big Imaging - Building and Augmenting Datasets

• then you’d already solved the task before even starting to train your segmentation algorithm.
• An algorithm based on learning doesn’t improve the results, it only make it easier to handle large amounts of data.

0.6 Augmentation

Obtaining more experiment data is mostly relatively hard,
• Time in the lab is limited.
• Sample preparation is expensive.
• The number of specimens is limited.

Still, many supervised analysis methods require large data sets to perform reliably. A method to improve this situation is
to use data augmentation. This means that you take the existing data and distorts it using different transformations or add
features.

• Most groups have too little well-labeled data and labeling new examples can be very expensive.
• Additionally there might not be very many cases of specific classes.
• In medicine this is particularly problematic, because some diseases might only happen a few times in a given hospital
and you still want to be able to recognize the disease and not that particular person.

0.6.1 Typical augmentation operations

Transformations

• Shift
• Zoom
• Rotation
• Intensity
• Normalization
• Scaling
• Color
• Shear

Further modifications

• Add noise
• Blurring

24 CONTENTS

Quantitative Big Imaging - Building and Augmenting Datasets

0.6.2 Some augmentation examples

The figure below shows some examples of augmentations of the same image. You can also add noise and modulate the
image intensity to increase the variations further.

Original Elastic Rotated (30°) Zoom (0.75, 1.5)

Fig. 1: A retinal image modified using different augmentation techniques (source: https://drive.grand-challenge.org/
DRIVE/) prepared by Gian Guido Parenza.

Retina images from DRIVE prepared by Gian Guido Parenza.

0.6.3 Limitations of augmentation

• What transformations are normal in the images?
• CT images usually do not get flipped (the head is always on the top)
• The values in CT images have a physical meaning (Hounsfield unit), → scaling them changes the interpretation.
• How much distortion is too much?
• Can you still recognize the features?
• Is the distortion within natural bounds?

0.6.4 Keras ImageDataGenerator

Augmentation demonstration
Help page of the data generator

ImageDataGenerator(
['featurewise_center=False', 'samplewise_center=False', 'featurewise_std_

↪normalization=False', 'samplewise_std_normalization=False', 'zca_whitening=False',
↪'zca_epsilon=1e-06', 'rotation_range=0.0', 'width_shift_range=0.0', 'height_shift_
↪range=0.0', 'shear_range=0.0', 'zoom_range=0.0', 'channel_shift_range=0.0', "fill_
↪mode='nearest'", 'cval=0.0', 'horizontal_flip=False', 'vertical_flip=False',
↪'rescale=None', 'preprocessing_function=None', 'data_format=None'],

(continues on next page)

0.6. Augmentation 25

https://drive.grand-challenge.org/DRIVE/
https://drive.grand-challenge.org/DRIVE/
https://drive.grand-challenge.org/DRIVE/
https://gac6.medium.com/visualizing-data-augmentations-from-keras-image-data-generator-44f040aa4c9f

Quantitative Big Imaging - Building and Augmenting Datasets

(continued from previous page)

)
Docstring:
Generate minibatches of image data with real-time data augmentation.

Arguments
featurewise_center: set input mean to 0 over the dataset.
samplewise_center: set each sample mean to 0.
featurewise_std_normalization: divide inputs by std of the dataset.
samplewise_std_normalization: divide each input by its std.
zca_whitening: apply ZCA whitening.
zca_epsilon: epsilon for ZCA whitening. Default is 1e-6.
rotation_range: degrees (0 to 180).
width_shift_range: fraction of total width, if < 1, or pixels if >= 1.
height_shift_range: fraction of total height, if < 1, or pixels if >= 1.
shear_range: shear intensity (shear angle in degrees).
zoom_range: amount of zoom. if scalar z, zoom will be randomly picked

in the range [1-z, 1+z]. A sequence of two can be passed instead
to select this range.

channel_shift_range: shift range for each channel.
fill_mode: points outside the boundaries are filled according to the

given mode ('constant', 'nearest', 'reflect' or 'wrap'). Default
is 'nearest'.
Points outside the boundaries of the input are filled according to the given␣

↪mode:
'constant': kkkkkkkk|abcd|kkkkkkkk (cval=k)
'nearest': aaaaaaaa|abcd|dddddddd
'reflect': abcddcba|abcd|dcbaabcd
'wrap': abcdabcd|abcd|abcdabcd

cval: value used for points outside the boundaries when fill_mode is
'constant'. Default is 0.

horizontal_flip: whether to randomly flip images horizontally.
vertical_flip: whether to randomly flip images vertically.
rescale: rescaling factor. If None or 0, no rescaling is applied,

otherwise we multiply the data by the value provided. This is
applied after the `preprocessing_function` (if any provided)
but before any other transformation.

preprocessing_function: function that will be implied on each input.
The function will run before any other modification on it.
The function should take one argument:
one image (Numpy tensor with rank 3),

A Keras ImageDataGenerator example

There are quite many degrees of freedom to use the ImageDataGenerator. The generator is given all boundary condition
at initialization time. Below you see an example of how it can be initialized.

from keras.datasets import mnist

from keras.preprocessing.image import ImageDataGenerator

img_aug = ImageDataGenerator(
featurewise_center = False,
samplewise_center = False,

(continues on next page)

26 CONTENTS

Quantitative Big Imaging - Building and Augmenting Datasets

(continued from previous page)

zca_whitening = False,
zca_epsilon = 1e-06,
rotation_range = 30.0,
width_shift_range = 0.25,
height_shift_range = 0.25,
shear_range = 0.25,
zoom_range = 0.5,
fill_mode = 'nearest',
horizontal_flip = False,
vertical_flip = False

)

0.6.5 Augmenting MNIST images

Even something as simple as labeling digits can be very time consuming (maybe 1-2 per second).

import numpy as np
import matplotlib.pyplot as plt
from keras.datasets import mnist
%matplotlib inline

from keras.datasets import mnist
(img, label), _ = mnist.load_data(); img = np.expand_dims(img, -1)

img, label = tfds.as_numpy(tfds.load(
'mnist',
split='test',
batch_size=-1,
as_supervised=True,

))

fig, m_axs = plt.subplots(4, 10, figsize=(14, 7))
setup augmentation
img_aug.fit(img)
real_aug = img_aug.flow(img[:10], label[:10], shuffle=False)
for c_axs, do_augmentation in zip(m_axs, [False, True, True, True]):

if do_augmentation:
img_batch, label_batch = next(real_aug)

else:
img_batch, label_batch = img, label

for c_ax, c_img, c_label in zip(c_axs, img_batch, label_batch):
c_ax.imshow(c_img[:, :, 0], cmap='gray', vmin=0, vmax=255)
c_ax.set_title('{}\n{}'.format(c_label, 'aug' if do_augmentation else '')),␣

↪c_ax.axis('off');

0.6. Augmentation 27

Quantitative Big Imaging - Building and Augmenting Datasets

0.6.6 A larger open data set

We can use a more exciting dataset to try some of the other features in augmentation.
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000
training images and 10000 test images.
Here are some examples from the CIFAR10 dataset

Augmenting CIFAR10 images

from keras.datasets import cifar10
(img, label), _ = cifar10.load_data()

img_aug = ImageDataGenerator(
featurewise_center = True,
samplewise_center = False,
zca_whitening = False,
zca_epsilon = 1e-06,
rotation_range = 30.0,
width_shift_range = 0.25,
height_shift_range = 0.25,
channel_shift_range = 0.25,
shear_range = 0.25,
zoom_range = 1,
fill_mode = 'reflect',
horizontal_flip = True,
vertical_flip = True

)

28 CONTENTS

https://www.cs.toronto.edu/~kriz/cifar.html

Quantitative Big Imaging - Building and Augmenting Datasets

Running the CIFAR augmentation

import numpy as np
import matplotlib.pyplot as plt
from keras.datasets import mnist
%matplotlib inline

fig, m_axs = plt.subplots(4, 10, figsize=(18, 8))
setup augmentation
img_aug.fit(img)
real_aug = img_aug.flow(img[:10], label[:10], shuffle=False)
for c_axs, do_augmentation in zip(m_axs, [False, True, True, True]):

if do_augmentation:
img_batch, label_batch = next(real_aug)
img_batch -= img_batch.min()
img_batch = np.clip(img_batch/img_batch.max() *

255, 0, 255).astype('uint8')
else:

img_batch, label_batch = img, label
for c_ax, c_img, c_label in zip(c_axs, img_batch, label_batch):

c_ax.imshow(c_img)
c_ax.set_title('{}\n{}'.format(

c_label[0], 'aug' if do_augmentation else ''))
c_ax.axis('off')

0.7 Baselines

A baseline is
• a simple,
• easily implemented and understood model
• that illustrates the problem

0.7. Baselines 29

Quantitative Big Imaging - Building and Augmenting Datasets

• and the ‘worst-case scenario’ for a model that learns nothing (some models will do worse, but these are especially
useless).

Why is this important?

0.7.1 Baseline model example

I have a a model that is >99% accurate for predicting breast cancer:

DoIHaveBreastCancer(Age,Weight,Race) = No!

0.7.2 The dummy classifier

Let’s train the dummy classifier with some values related to healthy and cancer sick patients. Measurements values 0,1,
and 2 are healthy while the value 3 has cancer. We train the classifyer with the strategy that the most frequent class will
predict the outcome.

from sklearn.dummy import DummyClassifier

dc = DummyClassifier(strategy='most_frequent')

dc.fit([0, 1, 2, 3],
['Healthy', 'Healthy', 'Healthy', 'Cancer'])

DummyClassifier(strategy='most_frequent')

Testing the outcome of the classifyer

for idx in [0,1,3,100] :
print('Prediction for {0} is {1}'.format(idx,dc.predict([idx])[0]))

Prediction for 0 is Healthy
Prediction for 1 is Healthy
Prediction for 3 is Healthy
Prediction for 100 is Healthy

With these few lines we test what happens when we provide some numbers to the classifyer. The numbers are
• 0 and 1, which are expected to be healthy
• 3 , which has cancer
• 100, unknown to the model

So, the classifyer tells us that all values are from healthy patients… not really good! The reason is that it was told to tell
us the category of the majority, which is that the patient is healthy.

30 CONTENTS

Quantitative Big Imaging - Building and Augmenting Datasets

0.7.3 Try dummy classifier on MNIST data

The previous basic problem showed us how the dummy classifier work. Now we want to use it with the handwritten
numbers in the MNIST dataset. The first step is to load the data and check how the distribution of numbers in the data
set using a histogram.

import numpy as np
import matplotlib.pyplot as plt
from keras.datasets import mnist
from skimage.util import montage as montage2d
%matplotlib inline

(img, label), _ = mnist.load_data()
fig, m_axs = plt.subplots(5, 5, figsize=(10, 10)); m_axs= m_axs.ravel()
m_axs[0].hist(label[:24], np.arange(11)), m_axs[0].set_title('Digit Distribution')

for i, c_ax in enumerate(m_axs[1:]):
c_ax.imshow(img[i], cmap='gray')
c_ax.set_title(label[i]); c_ax.axis('off')

0.7. Baselines 31

Quantitative Big Imaging - Building and Augmenting Datasets

Let’s train the model…

Now we want to train the model with our data. Once again we use the most frequent model. The training is done in the
first 24 images in the data set. The fitting requires that we provide the images with numbers and their associated labels
telling the model how to interpret the image.

dc = DummyClassifier(strategy='most_frequent')
dc.fit(img[:24], label[:24])

DummyClassifier(strategy='most_frequent')

A basic test
In the basic test, we provide the first ten images and hope to get predictions which numbers they represent.

32 CONTENTS

Quantitative Big Imaging - Building and Augmenting Datasets

dc.predict(img[0:10])

array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=uint8)

Test on the images

Let’s see how good these predictions really are by showing the images along with their labels and the prediction of the
trained model.

fig, m_axs = plt.subplots(4, 6, figsize=(12, 12))
for i, c_ax in enumerate(m_axs.flatten()):

c_ax.imshow(img[i], cmap='gray')

prediction = dc.predict(img[i])[0]

c_ax.set_title('{}\nPredicted: {}'.format(label[i],prediction), color='green' if␣
↪prediction == label[i] else 'red'), c_ax.axis('off');

0.7. Baselines 33

Quantitative Big Imaging - Building and Augmenting Datasets

… why are all predictions = 1?

The result of the basic classifyer was quite disapointing. It told us that all ten images contained the number ‘1’. Now, why
is that?
This can be explained by looking at the label histogram:

plt.hist(label[:24], np.arange(11)); plt.title('Frequency of numbers in the training␣
↪data');

34 CONTENTS

Quantitative Big Imaging - Building and Augmenting Datasets

Here, we see that there are most ‘1’s in the training data. We have been using the most frequent model for training the
classifyer therefore the response ‘1’ is the only answer the model can give us.

0.7.4 Nearest Neighbor

A better baseline
This isn’t a machine learning class and so we won’t dive deeply into other methods, but nearest neighbor is often a very
good baseline (that is also very easy to understand). You basically take the element from the original set that is closest to
the image you show.
Figure from J. Russ, Image Processing Handbook
You can make the method more robust by using more than one nearest neighbor (hence K nearest neighbors), but that we
will cover later in the supervised methods lecture.

Let’s load the data again…

Let’s come back to the MNIST numbers again. This time, we will try the k-nearest neighbors as baseline and see if we
can get a better result than with the dummy classifyer with majority voting.

import numpy as np
import matplotlib.pyplot as plt
from keras.datasets import mnist
from skimage.util import montage as montage2d
%matplotlib inline

0.7. Baselines 35

Quantitative Big Imaging - Building and Augmenting Datasets

Fig. 1: Examples of the k-nearest neighbors classifyer (Figure from J. Russ, Image Processing Handbook).

(img, label), _ = mnist.load_data()
fig, m_axs = plt.subplots(5, 5, figsize=(12, 12))
m_axs[0, 0].hist(label[:24], np.arange(11))
m_axs[0, 0].set_title('Digit Distribution')
for i, c_ax in enumerate(m_axs.flatten()[1:]):

c_ax.imshow(img[i], cmap='gray')
c_ax.set_title(label[i]); c_ax.axis('off');

36 CONTENTS

https://www.crcpress.com/The-Image-Processing-Handbook/Russ-Neal/p/book/9781138747494

Quantitative Big Imaging - Building and Augmenting Datasets

Training k-nearest neighbors

The training of the k-nearest neigbors consists of filling feature vectors into the model and assign each vector to a class.
But images are not vectors… so what we do is to rearrange the𝑁 ×𝑀 images into a vector with the dimensions𝑀 ⋅𝑁 ×1.

from sklearn.neighbors import KNeighborsClassifier
neigh_class = KNeighborsClassifier(n_neighbors=1)

N = 24
neigh_class.fit(img[:N].reshape((N, -1)), label[:N])

KNeighborsClassifier(n_neighbors=1)

0.7. Baselines 37

Quantitative Big Imaging - Building and Augmenting Datasets

Predict on a few images

The prediction of which class an image belongs to is done by reshaping the input image into a vector in the same manner
as for the training data. Now we will compare the input vector 𝑢 to all the vectors in the trained model 𝑣𝑖 by computing
the Euclidean distance between the vectors. This can easily be done by the inner product of the two vectors:

𝐷𝑖 = (𝑣𝑖 − 𝑢)𝑇 ⋅ (𝑣𝑖 − 𝑢) = 𝑠𝑐𝑎𝑙𝑎𝑟

The class is chosen by the model vector that is closest to the input vector, i.e. having the smallest 𝐷𝑖. This calculations
are done for you as a black box in the KNeighborsClassifier, you only have to reshape the images into the right
format.

neigh_class.predict(img[0:10].reshape((10, -1)))

array([5, 0, 4, 1, 9, 2, 1, 3, 1, 4], dtype=uint8)

Compare predictions with the images

fig, m_axs = plt.subplots(4, 6, figsize=(12, 12))
for i, c_ax in enumerate(m_axs.flatten()):

c_ax.imshow(img[i], cmap='gray')

prediction = neigh_class.predict(img[i].reshape((1, -1)))[0]

c_ax.set_title('{}\nPredicted: {}'.format(label[i],prediction), color='green' if␣
↪prediction == label[i] else 'red')

c_ax.axis('off');

38 CONTENTS

Quantitative Big Imaging - Building and Augmenting Datasets

Wow, 100% correct!

100% for a baseline !!?

Wow the model works really really well, it got every example perfectly.
What we did here (a commonmistake) was evaluate on the same data we ‘trained’ on which means the model just correctly
recalled each example. This is natural as there is always an image that gives the distance 𝐷𝑖 = 0.
Now, if we try it on new images we can see the performance drop but still a somewhat reasonable result.

fig, m_axs = plt.subplots(4, 6, figsize=(12, 12))
for i, c_ax in enumerate(m_axs.flatten(), 25):

c_ax.imshow(img[i], cmap='gray')
prediction = neigh_class.predict(img[i].reshape((1, -1)))[0];
c_ax.set_title('{}\nPredicted: {}'.format(label[i],prediction), color='green' if␣

↪prediction == label[i] else 'red')

(continues on next page)

0.7. Baselines 39

Quantitative Big Imaging - Building and Augmenting Datasets

(continued from previous page)

c_ax.axis('off')

0.7.5 How good is good?

From the previous example, we saw that the classify doesn’t really reach the 100% accuracy on unseen data, but rather
makes a mistake here or there. Therefore we need to quantify how good it really is to be able to compare the results with
other algorithms. We will cover more tools later in the class but now we will show the accuracy and the confusion matrix
for our simple baseline model to evaluate how well it worked.

40 CONTENTS

Quantitative Big Imaging - Building and Augmenting Datasets

Confusion Matrix

The confusion matrix is a kind of histogram where you count the number of predicted occurances for each actual label.
This gives us an idea about the classifyier performance.
We show which cases were most frequently confused

n=165 Predicted TRUE Predicted FALSE
Actual TRUE 50 10
Actual FALSE 5 100

This is only a simple matrix for the two cases true and false. The matrix does however grow with the number of classes
in the data set. It is always a square matrix as we have the same number of actual classes as we have predicted classes.

Confusion matrix for the MNIST classification

We saw that the k-nearest neighbors did a couple of missclassifications on the unseen test data. Now is the question how
many mistakes it really does and how many correct labels it assigned. If compute the confusion matrix for this example,
we will get a 10x10 matrix i.e. one for each class in the data set.

import seaborn as sns
import pandas as pd
def print_confusion_matrix(confusion_matrix, class_names, figsize = (10,7),␣

↪fontsize=14):
"""Prints a confusion matrix, as returned by sklearn.metrics.confusion_matrix, as␣

↪a heatmap.

Stolen from: https://gist.github.com/shaypal5/94c53d765083101efc0240d776a23823

Arguments

confusion_matrix: numpy.ndarray

The numpy.ndarray object returned from a call to sklearn.metrics.confusion_
↪matrix.

Similarly constructed ndarrays can also be used.
class_names: list

An ordered list of class names, in the order they index the given confusion␣
↪matrix.

figsize: tuple
A 2-long tuple, the first value determining the horizontal size of the␣

↪ouputted figure,
the second determining the vertical size. Defaults to (10,7).

fontsize: int
Font size for axes labels. Defaults to 14.

Returns

matplotlib.figure.Figure

The resulting confusion matrix figure
"""
df_cm = pd.DataFrame(

confusion_matrix, index=class_names, columns=class_names,
)
fig, ax1 = plt.subplots(1, 1, figsize=figsize)
try:

(continues on next page)

0.7. Baselines 41

Quantitative Big Imaging - Building and Augmenting Datasets

(continued from previous page)

heatmap = sns.heatmap(df_cm, annot=True, fmt="d")
except ValueError:

raise ValueError("Confusion matrix values must be integers.")
heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right

↪', fontsize=fontsize)
heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha=

↪'right', fontsize=fontsize)
plt.ylabel('True label')
plt.xlabel('Predicted label')
return ax1

from sklearn.metrics import accuracy_score, confusion_matrix
pred_values = neigh_class.predict(img[24:].reshape((-1, 28*28)))
ax1 = print_confusion_matrix(confusion_matrix(label[24:], pred_values), class_

↪names=range(10))
ax1.set_title('Accuracy: {:2.2%}'.format(accuracy_score(label[24:], pred_values)));

In this confusion matrix we see that some numbers are easier to classify than others. Some examples are:
• The ‘0’ seems to be hard to confuse with other numers.
• Many images from all categories are falsely assigned to the ‘1’
• The number ‘4’ is more probable to be assigned a label ‘9’ than the ‘4’

42 CONTENTS

Quantitative Big Imaging - Building and Augmenting Datasets

This experiment was done with a very limited training data set. You can experiment with more neighbors and more
training data to see what improvement that brings. In all, there are 60000 images with digits in the data set.

0.8 Data frames - managing feature tables

0.8.1 Our workflow

• Image analysis
• Feature selection and analysis
• Presentation

Fig. 1: Different destinations of the processed data.

How do we store the features while working with the data?

0.8.2 How do we store the features?

Python offers different options

• Arrays per feature
• List of data structures/dictionaries

0.8. Data frames - managing feature tables 43

Quantitative Big Imaging - Building and Augmenting Datasets

Operations on the feature data

• Counting
• Statistics
• Selections
• Transforms
• Visualization

Problem

With custom storage we have to implement functions for each operation:
• Time consuming
• Little flexibility
• Error prone

0.8.3 Introducing data frames

We have already seen data frames in action but never formally introduced them…
A data frame is

• A data container
• Organized into columns and rows
• Has similarities to a spread sheet table
• Takes any data in the columns

You can
• Apply filters for selection
• Sort the rows
• Perform artihmetics
• Compute statistics
• Read and store into files and databases

Pandas documentation Getting started with Pandas

0.8.4 Create a data frame

There are different ways to create a data frame:
• From a dict
• From a data file
• From numpy arrays

First we have import pandas:

44 CONTENTS

https://pandas.pydata.org/pandas-docs/stable/index.html
https://pandas.pydata.org/pandas-docs/stable/getting_started/intro_tutorials/index.html

Quantitative Big Imaging - Building and Augmenting Datasets

import pandas as pd

Read from a spreadsheet (csv)

Sometimes the features have been extracted elsewhere and stored in a file, e.g. CSV

pheno = pd.read_csv('../../Exercises/08-Statistics/phenoTable.csv')
pheno.sample(5)

BMD MECHANICS_STIFFNESS CORT_DTO__C_TH CORT_DTO__C_TH_SD \
932 0.0334 57.290029 0.177557 0.015228
816 0.0333 44.147437 0.166546 0.016492
493 0.0378 71.314727 0.205053 0.025839
595 0.0355 77.013707 0.176694 0.025066
437 0.0334 57.022637 0.186180 0.020940

CORT_MOM__J CT_TH_RAD CT_TH_RAD_STD CANAL_VOLUME CANAL_COUNT \
932 0.136729 83.765277 16.958103 42036.603934 184.0
816 0.097441 78.263981 16.655373 15503.270165 112.0
493 0.176107 89.342171 11.849732 27872.923179 256.0
595 0.169222 77.582834 13.892232 24473.959911 147.0
437 0.129764 86.610657 22.381650 100302.614699 213.0

CANAL_DENSITY ... CANAL_THETA CANAL_THETA_CV CANAL_PCA1 \
932 237.495401 ... 52.030266 0.458248 206.501841
816 162.225904 ... 59.897049 0.353143 242.722160
493 295.707783 ... 55.151339 0.399915 228.013065
595 176.944924 ... 54.378173 0.381628 251.041082
437 236.706336 ... 47.352149 0.504595 207.816009

CANAL_PCA1_CV CANAL_PCA2 CANAL_PCA2_CV CANAL_PCA3 CANAL_PCA3_CV \
932 0.929709 62.322018 0.772255 29.947629 0.500948
816 0.720281 70.993918 1.081922 34.056964 0.899536
493 1.125925 62.609521 0.773727 27.976256 0.542270
595 1.056638 63.318764 1.173536 27.209263 0.516190
437 0.850218 77.106751 0.831428 37.338271 0.709254

FEMALE ID
932 1 2446
816 1 2253
493 1 1345
595 1 1795
437 0 1271

[5 rows x 35 columns]

Saving works similarly:

pheno.to_csv('pheno2.csv')

0.8. Data frames - managing feature tables 45

Quantitative Big Imaging - Building and Augmenting Datasets

Create a data frame using dicts

We create the data frame as the features are produced.

dl = []
for i in np.arange(0,10) :

dl.append({'position' : i, 'sine' : np.sin(i)})
print(dl)

[{'position': 0, 'sine': 0.0}, {'position': 1, 'sine': 0.8414709848078965}, {
↪'position': 2, 'sine': 0.9092974268256817}, {'position': 3, 'sine': 0.
↪1411200080598672}, {'position': 4, 'sine': -0.7568024953079283}, {'position': 5,
↪'sine': -0.9589242746631385}, {'position': 6, 'sine': -0.27941549819892586}, {
↪'position': 7, 'sine': 0.6569865987187891}, {'position': 8, 'sine': 0.
↪9893582466233818}, {'position': 9, 'sine': 0.4121184852417566}]

df = pd.DataFrame(dl)

df.sample(5)

position sine
2 2 0.909297
7 7 0.656987
4 4 -0.756802
1 1 0.841471
6 6 -0.279415

An alternative…

You may already have numpy arrays with the data.

x = np.linspace(0,2*np.pi,100)
sine = np.sin(x)
dd = {'position' : x, 'sine' : sine}

ddf = pd.DataFrame(dd)
ddf.head(5)

position sine
0 0.000000 0.000000
1 0.063467 0.063424
2 0.126933 0.126592
3 0.190400 0.189251
4 0.253866 0.251148

46 CONTENTS

Quantitative Big Imaging - Building and Augmenting Datasets

0.8.5 Working with columns

Add a new column

When we start working on the data, we may need to add a column

df['cosine'] = np.cos(df['position'])
df['sum'] = df['sine']+df['cosine']
df['positive'] = 0<df['sine']
df.head()

position sine cosine sum positive
0 0 0.000000 1.000000 1.000000 False
1 1 0.841471 0.540302 1.381773 True
2 2 0.909297 -0.416147 0.493151 True
3 3 0.141120 -0.989992 -0.848872 True
4 4 -0.756802 -0.653644 -1.410446 False

Select some rows with content filtering

df2=df[0<df['sine']]
df2.head(5)

position sine cosine sum positive
1 1 0.841471 0.540302 1.381773 True
2 2 0.909297 -0.416147 0.493151 True
3 3 0.141120 -0.989992 -0.848872 True
7 7 0.656987 0.753902 1.410889 True
8 8 0.989358 -0.145500 0.843858 True

Rename column titles

Note: Here is also a different way to create a data frame with dicts and lists.

df3 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
df3.head()

A B
0 1 4
1 2 5
2 3 6

df3 = df3.rename(columns={"A": "hej", "B": "hopp"})
df3

hej hopp
0 1 4
1 2 5
2 3 6

0.8. Data frames - managing feature tables 47

Quantitative Big Imaging - Building and Augmenting Datasets

0.8.6 Statistics with a data frame

You can easily compute statistics on a data frame:
• mean
• std
• min
• max
• median

df.mean()

position 4.500000
sine 0.195521
cosine 0.042162
sum 0.237683
positive 0.600000
dtype: float64

df.describe()

position sine cosine sum
count 10.00000 10.000000 10.000000 10.000000
mean 4.50000 0.195521 0.042162 0.237683
std 3.02765 0.693076 0.765706 1.009325
min 0.00000 -0.958924 -0.989992 -1.410446
25% 2.25000 -0.209562 -0.594269 -0.631200
50% 4.50000 0.276619 0.069081 0.586953
75% 6.75000 0.795350 0.700502 0.960965
max 9.00000 0.989358 1.000000 1.410889

0.8.7 Statistics of filtered data

Compute the standard deviation for all columns with the rows have 0<sum

df.head()
df[0<df["sum"]]['sine'].std()

48 CONTENTS

Quantitative Big Imaging - Building and Augmenting Datasets

0.5297967209946162

Statistics using grouping

Filtering works well for few categories, but for many categories some smarter tricks can be used:

compute category statistics
group_name='positive'
data_agg = df.groupby(group_name).mean()

data_agg

position sine cosine sum
positive
False 3.75 -0.498786 0.397547 -0.101238
True 5.00 0.658392 -0.194761 0.463631

Too cluttered?
We may not be interested in the all columns, maybe want to add std dev.

compute category statistics
group_name='positive'
value_name='sine'
data_agg = df.groupby(group_name).agg({value_name: ['mean', 'var']}).reset_index()
data_agg.columns = data_agg.columns.get_level_values(1)

data_agg

mean var
0 False -0.498786 0.191737
1 True 0.658392 0.106847

0.8.8 Visualizing the contents of a data frame

In addition to all other plotting options, Pandas supports some basic plotting functionality

fig,ax=plt.subplots(1,1,figsize=(4,4))
df.plot(ax=ax);

0.8. Data frames - managing feature tables 49

Quantitative Big Imaging - Building and Augmenting Datasets

Selective plotting

We mostly don’t want to plot all columns at once

fig,ax=plt.subplots(1,3,figsize=(15,5))

df['sine'].plot(ax=ax[0]);
ax[0].set_title("Plot column sine");

df.plot(x='sine',y='cosine',ax=ax[1]);
ax[1].set_title("Plot column cosine as function of sine")

df[0<df['sine']].plot(x='position',y='cosine',ax=ax[2]);
ax[2].set_title("Plot column cos as function of position");

50 CONTENTS

Quantitative Big Imaging - Building and Augmenting Datasets

Different plotting styles

fig,(ax1,ax2)=plt.subplots(1,2,figsize=(12,5))

df.plot(kind='bar',ax=ax1);
ax1.set_title('Bar plot');

df.plot(kind='scatter',x='sine',y='cosine',ax=ax2);
ax2.set_title('Scatter plot');

Further plotting options can be found on pandas visualization documentation

0.8.9 Set operations with data frames

In our work we may produce several data frames that needs to be merged:
• Image features
• Meta data
• Sensor logs
• etc.

Merging frames topic in Pandas documentation

Concatenating frames

Add more rows with the same categories

Concatenation adds rows of two data frames with the same columns.

dfA = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3'],
'C': ['C0', 'C1', 'C2', 'C3'],

(continues on next page)

0.8. Data frames - managing feature tables 51

https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

Quantitative Big Imaging - Building and Augmenting Datasets

(continued from previous page)

'D': ['D0', 'D1', 'D2', 'D3']})

dfB = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
'B': ['B4', 'B5', 'B6', 'B7'],
'C': ['C4', 'C5', 'C6', 'C7'],
'D': ['D4', 'D5', 'D6', 'D7']})

frames = [dfA, dfB]
result = pd.concat(frames)
result

Concatenating this way has the disadvantage that the rows will be maintained from the original data frames. This can be
avoided if you add an index vector when you concatenate.

dfA = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']},
index=[0, 1, 2, 3])

dfB = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
'B': ['B4', 'B5', 'B6', 'B7'],
'C': ['C4', 'C5', 'C6', 'C7'],
'D': ['D4', 'D5', 'D6', 'D7']},
index=[4, 5, 6, 7])

frames = [dfA, dfB]
result = pd.concat(frames)
result

Merging data frames

Add columns with new categories, at least one column in common.

Merging is when you add columns to the data frame.

dfA = pd.DataFrame({'id' : [1,2,3,4],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']},
index=[0, 1, 2, 3])

dfB = pd.DataFrame({'id' : [1,2,3,4],
'X': ['B4', 'B5', 'B6', 'B7'],
'Y': ['C4', 'C5', 'C6', 'C7'],
'Z': ['D4', 'D5', 'D6', 'D7']},
index=[1,2,3,4])

result=pd.merge(dfA,dfB)
result

52 CONTENTS

Quantitative Big Imaging - Building and Augmenting Datasets

0.8.10 Create new data frame from selected columns

new = result[['A','C','D']]
new.head()

0.8.11 When are pandas data frames useful?

• Pandas is useful for large data - as long as it fits in the local memory.
• Really big data needs other options, e.g. dask data frames

How about big quantitative imaging?

0.9 Summary

• The importance of good data
• What is good data
• Preparing data
• Famous data sets
• Augmentation

– Transformations for increase the data
• Baseline algorithms

– What is it?
– How good is our baseline algorithm?
– The confusion matrix

• Data frames
– Create
– Select
– Combine
– Plot

0.9.1 Next week

Noise and filters

0.9. Summary 53

https://docs.dask.org/en/latest/dataframe.html

	Ground Truth: Building and Augmenting Datasets
	Today’s lecture
	Let’s load some modules for the notebook
	References
	Motivation
	Sean Taylor (Research Scientist at Facebook)
	Andrej Karpathy (Director of AI at Tesla)
	Kathy Scott (Image Analytics Lead at Planet Labs)

	Data is important
	Data is reusable

	Famous Datasets
	MNIST Digits
	ImageNet
	BRATS
	What story did these datasets tell?
	So Deep Learning always wins?
	How to work with someone else’s data
	The FAIR principle
	PaNOSC

	Other Datasets
	What makes a good dataset?
	Lots of images
	Lots of diversity
	Meaningful labels

	Purpose of different types of Datasets
	Classification
	Classification example

	Regression
	Regression example Age from X-Rays

	Segmentation
	Segmnetation examples:
	Segmentation example: Nuclei in Microscope Images

	Detection
	Detection example: Opaque Regions in X-Rays

	Other
	Image Enhancement

	Building your own data sets
	Code-free
	Classification
	Regression
	Segmentation / Object Detection

	Software for data labelling
	Free tools
	Commercial Approaches
	Example: annotation of spots

	Simulations
	Simulation examples
	Examples

	Dataset Problems
	Bias
	A better solution to avoid biasing

	Image data and labels
	Limited data

	Augmentation
	Typical augmentation operations
	Transformations
	Further modifications

	Some augmentation examples
	Limitations of augmentation
	Keras ImageDataGenerator
	A Keras ImageDataGenerator example

	Augmenting MNIST images
	A larger open data set
	Augmenting CIFAR10 images
	Running the CIFAR augmentation

	Baselines
	Baseline model example
	The dummy classifier
	Try dummy classifier on MNIST data
	Let’s train the model…
	Test on the images
	… why are all predictions = 1?

	Nearest Neighbor
	Let’s load the data again…
	Training k-nearest neighbors
	Predict on a few images
	Compare predictions with the images
	100% for a baseline !!?

	How good is good?
	Confusion Matrix
	Confusion matrix for the MNIST classification

	Data frames - managing feature tables
	Our workflow
	How do we store the features?
	Python offers different options
	Operations on the feature data
	Problem

	Introducing data frames
	Create a data frame
	Read from a spreadsheet (csv)
	Create a data frame using dicts
	An alternative…

	Working with columns
	Add a new column
	Select some rows with content filtering
	Rename column titles

	Statistics with a data frame
	Statistics of filtered data
	Statistics using grouping

	Visualizing the contents of a data frame
	Selective plotting
	Different plotting styles

	Set operations with data frames
	Concatenating frames
	Add more rows with the same categories

	Merging data frames
	Add columns with new categories, at least one column in common.

	Create new data frame from selected columns
	When are pandas data frames useful?
	How about big quantitative imaging?

	Summary
	Next week

