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Quantitative Big Imaging - Bimodal experiments

This is the lecture notes for the 10th lecture of the Quantitative big imaging class given during the spring semester
2021 at ETH Zurich, Switzerland.
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CHAPTER

ONE

BIMODAL EXPERIMENTS

%reload_ext autoreload
%autoreload 2
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import itertools
import numpy as np
import skimage.io as io
from scipy import linalg
import matplotlib as mpl
from sklearn import mixture
import pandas as pd

plt.rcParams["figure.figsize"] = (8, 8)
plt.rcParams["figure.dpi"] = 100
plt.rcParams["font.size"] = 14
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['DejaVu Sans']
plt.style.use('default')
sns.set_style("whitegrid", {'axes.grid': False})

1.1 Literature / Useful References

1.1.1 Books

General:

• John C. Russ, “The Image Processing Handbook”,(Boca Raton, CRC Press)

• Available online within domain ethz.ch (or proxy.ethz.ch / public VPN)

3
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Fusion specific:

• Mitchell, H.B., “Data Fusion: Concepts and Ideas”, Springer Verlag, 2012.

• Mitchel, H.B., “Image Fusion - Theories, Techniques and Applications”, Springer Verlag, 2010.

• T. Stathaki, “Image fusion”, Academic Press, 2008

• Goshtasby, A. Ardeshir, “Image Registration Principles, Tools and Methods”, Springer Verlag, 2012

• Xiao, G., Bavirisetti, D.P., Liu, G., Zhang, X., “Image Fusion”, Springer Verlag, to be published July, 2020

1.2 Previously on QBI . . .

• Image Enhancment

• Highlighting the contrast of interest in images

• Minimizing Noise

• Understanding image histograms

• Automatic Methods

• Component Labeling

• Single Shape Analysis

• Complicated Shapes

• Dynamic Experiments

• Image registration

• Statistics

• Plotting

1.3 Outline

• Motivation (Why and How?)

• Scientific Goals

• Image fusion

• Bivariate segmentation

• Managing data tables

4 Chapter 1. Bimodal experiments

https://www.doi.org/10.1007/978-3-642-27222-6
https://www.doi.org/10.1007/978-3-642-11216-4
https://doi.org/10.1016/B978-0-12-372529-5.X0001-7
https://www.doi.org/10.1007/978-981-15-4867-3


CHAPTER

TWO

IMAGING MODALITIES

2.1 Some imaging experiments and their challenges

• Segmentation accuracy

• Estimate water content

• Segmentation accuracy

• Material classification

• Estimate water content

• Dimensional changes

• Penetration power

• Ambiguous readings

Fig. 2.1: In the soil the graylevels are often ambiguous.

2.2 Reasons to select an imaging modality?

Reasons to select or reject a specific imaging method

• Good transmission

• Good contrast

• Relevant features visible

• Materials can be identified

• Low transmission

• Low contrast

• Not all features visible

• Ambiguous response

Until now, we only collected image features from a single modality.

5
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Fig. 2.2: Studies of the cultural heritage.

Fig. 2.3: Dimensional changes in porous media.

Fig. 2.4: Material science with material mixes.

6 Chapter 2. Imaging modalities
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2.3 The aim of multimodal imaging

2.3.1 Purpose of multi-modality

Match the advantages of each method against the disadvantages of the other methods to obtain more information than
using each method individually.

1. Extend range of operation.

2. Extend spatial and temporal coverage.

3. Reduce uncertainty.

4. Increase reliability.

5. Robust system performance.

Fig. 2.5: The multispectral glasses from the movie ‘National Treasure’.

## The players of an imaging experiment

Fig. 2.6: An imaging experiment is only successful when all aspects are considered.

2.3. The aim of multimodal imaging 7
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2.4 Some considered modalities - Neutrons and X-rays

In material science it often relevant to combine imagning with neutrons and X-rays. The reason is the complementarity
between the two modalities. Simply put, neutrons are often sensitive to low-z materials while x-rays are more sensitive
to high-z materials. Combining the two modalities is of particular interest when the sample is a mix of high and low-z
materials.

Fig. 2.7: Neutron radiography of a camera.

Fig. 2.8: Attenuation coefficients for thermal neutrons.

8 Chapter 2. Imaging modalities
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Fig. 2.9: X-ray radiography of a camera.

Fig. 2.10: Attenuation coefficients for 125keV X-rays.

2.4. Some considered modalities - Neutrons and X-rays 9
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2.5 Some considered modalities for medical imaging

Imaging is widely used in medical applications. There are also many different imaging modalities available, each
revealing it own particular information.

The modalities also differ in the resolution that can be achived. Therefore, it makes sense to combine the modalities
to increase the understanding of provided information.

Fig. 2.11: Combining different medical imaging modalities.

Du et al. 2015

2.6 Some considered modalities - Grating interferometry

Grating interferometry is an imaging technique that exploits the wave property of the beam. This makes it possible to
extract more information than the traditional transmission image. These are

• The phase contrast - measures the phase shift of the beam to provide better contrast than the tranmission in some
cases.

• The dark field contrast - is related to the scattered bream and can probe clusters of sample features that a much
smaller than the resolution of the imaging system.

fig,ax=plt.subplots(1,3,figsize=(10,5))
ax[0].imshow(io.imread("figures/nGI_TI.png")); ax[0].set_title('Transmission');
→˓ ax[0].axis('off')

(continues on next page)

10 Chapter 2. Imaging modalities
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(continued from previous page)

ax[1].imshow(io.imread("figures/nGI_DPC.png")); ax[1].set_title('Differential phase
→˓contrast'); ax[1].axis('off')
ax[2].imshow(io.imread("figures/nGI_DFI.png")); ax[2].set_title('Dark field contrast
→˓'); ax[2].axis('off');

• Data comparable on pixel level

• Non-linear relation between the variables.

• Improved estimation schemes using iterative process

• Physical interpretation/motivation to fuse?

2.7 Some considered modalities - Spectroscopic imaging

Fig. 2.12: Neutron energy scan through a piece of iron.

2.7. Some considered modalities - Spectroscopic imaging 11
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• Material analysis

• Selector calibration

S. Peetermans

2.8 Other modalities and dimensionality

The information can also be provided as few localized points

• Single spots

• Surface information

• Single radiographs vs CT data

to provide

• Temperature

• Flowrate

• Pressure

12 Chapter 2. Imaging modalities



CHAPTER

THREE

DATA AND IMAGE FUSION

3.1 Definition

The theory, techniques and tools which are used for

• combining sensor data, or data derived from sensory data,

• into a common representational format.

3.2 Aim

To improve the quality of the information, so that it is, in some sense, better than would be possible if the data sources
were used individually.

Mitchell 2012

3.3 Fusion approaches - no golden recipe

3.3.1 Fusion strategies

• Multivariate fusion: All data are combined using the same concept.

• Augmented fusion: Modalities have different functions in the fusion process.

• Artifact reduction by fusion: The second modality can be used to fill in the blanks.

• Combination: A single fusion method may not give the final result - combination

3.3.2 Select strategy

The fusion strategy determined by:

• Sample composition

• Experiment objectives

• Condition of the data

## Levels of fusion

13
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Input Output Description
Data Data Input data is smoothed/filtered/segmented
Data Feature The pixels are reduced to features using multiple sources.
Feature Feature Input features are reduced in number, or new features are generated by fusing input features.
Feature Deci-

sion
Input features are fused together to give output decision.

Deci-
sion

Deci-
sion

Multiple input decisions are fused together to give a final output decision. e.g. Random
forest

14 Chapter 3. Data and image fusion



CHAPTER

FOUR

IMAGE FUSION WORKFLOW

Image fusion is the process to combine images from different modalities with the aim to enhance the information
compared the images individually. This process has serveral steps and the fusion can be done on several levels of
abstraction.

 

Pixel fusion Feature fusion
Temporal 
alignment 

Feature
Extraction

Decision Fusion

 

Radiometric
Calibration

Radiometric 
Calibration 

Decision
Labeling

Fusion

Registration

Image acquisition

Presentation
Display

Statisitics
Modelling

Fig. 4.1: Flow chart showing how image fusion can be done

Mitchel, 2010, Goshtasby, 2012

15
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4.1 Catastrophic fusion

4.1.1 Definition

The combination perform worse than the individual modalities.

Catastrofic fusion can be caused by:

• Selection of the wrong variables.

• Too complex combination.

• Sensor information canceling each other.

Fig. 4.2: More chefs don’t always mean better soup, the same applies to data fusion. Chose your source combination
and fusion metods carefully.

4.2 Image registration

From last weeks lecture: A series of affine transformations to bring images on the same grid.

4.2.1 The process

4.3 Registration considerations

Registration is an optimization problem with many local minima.

16 Chapter 4. Image fusion workflow



Quantitative Big Imaging - Bimodal experiments

Fixed

Moving

Fig. 4.3: Registration optimizes the scale, rotation, and position of an image compared to a fixed reference.

4.3.1 Manual or guided registration

• Perform the full transformation manually

• Identify land marks, points, lines, planes

• Provide a coarse preregistration

4.3.2 Automatic registration

• Iterative process

• Metrics

• Multi-modality loose common landmarks

Goshtasby, 2012

4.3. Registration considerations 17
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CHAPTER

FIVE

QUALITATIVE FUSION: REGISTRATION AND COVISUALIZATION

Use e.g. VG Studio or 3DSlicer to

• Register data sets

• Interactive guided segmentation of the separate data sets.

Fig. 5.1: The sword from lake Zug as seen with neutrons.

Fig. 5.2: The sword from lake Zug as seen with X-rays.

mannes2015_NXCultHer

19
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5.1 Let’s load some test data

imgA=np.load('data/shellN.npy')
imgB=np.load('data/shellX.npy')
fig,(ax1,ax2,ax3) = plt.subplots(1,3,figsize=(12,5))
ax1.imshow(imgA,cmap='viridis'), ax1.set_title('Neutrons')
ax2.imshow(imgB,cmap='viridis'), ax2.set_title('X-rays');
ax3.imshow(plt.imread('figures/snailshellNeutron.png')); ax3.axis('off');

5.2 Visualization techniques - Checker board

def checkerBoard(imgA,imgB,tiles=10) :
if imgA.shape != imgB.shape :

raise Exception('Image have different sizes')

dims = imgA.shape
tileSize = (dims[0]//tiles,dims[1]//tiles)

mix = np.zeros(dims)

for r in np.arange(0,tiles) :
for c in np.arange(0,tiles) :

if (c+r) % 2 :
mix[(r*tileSize[0]):((r+1)*tileSize[0]),

→˓(c*tileSize[1]):((c+1)*tileSize[1])]= imgB[(r*tileSize[0]):((r+1)*tileSize[0]),
→˓(c*tileSize[1]):((c+1)*tileSize[1])]

else :
mix[(r*tileSize[0]):((r+1)*tileSize[0]),

→˓(c*tileSize[1]):((c+1)*tileSize[1])]= imgA[(r*tileSize[0]):((r+1)*tileSize[0]),
→˓(c*tileSize[1]):((c+1)*tileSize[1])]

return mix
plt.figure(figsize=(3,3))
plt.imshow(checkerBoard(np.ones((100,100)),np.zeros((100,100)),tiles=5),interpolation=
→˓'none');

20 Chapter 5. Qualitative fusion: Registration and covisualization
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5.2.1 Try checker board with images

fig,(ax1,ax2,ax3)=plt.subplots(1,3,figsize=(15,5))
ax1.imshow(imgA,cmap='viridis',vmin=10000,vmax=60000), ax1.set_title('Neutrons')
ax2.imshow(checkerBoard(imgA,imgB,tiles=5),cmap='viridis',vmin=10000,vmax=60000);
ax2.annotate('Neutrons',

xy=(60, 60), xycoords='data',
xytext=(0.1, 1.1), textcoords='axes fraction',
arrowprops=dict(facecolor='red', shrink=0.05),
horizontalalignment='center', verticalalignment='top')

ax2.annotate('X-rays',
xy=(190, 60), xycoords='data',
xytext=(0.3, 1.1), textcoords='axes fraction',
arrowprops=dict(facecolor='red', shrink=0.05),
horizontalalignment='center', verticalalignment='top')

ax3.imshow(imgB,cmap='viridis'), ax3.set_title('X-rays');

5.2. Visualization techniques - Checker board 21
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5.3 Visualization techniques - Color chanel mixing

With two or more modalities, we can visualize the mix using the RGB color channels:⎧⎪⎨⎪⎩
𝑅 𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦𝐴

𝐺 𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦𝐵

𝐵 𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦𝐴+𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦𝐵

2

some intensity scaling may be needed for best result.

def channelMix(imgA,imgB, order=(0,1,2)) :
imgAN=(imgA-imgA.min())/(imgA.max()-imgA.min())
imgBN=(imgB-imgB.min())/(imgB.max()-imgB.min())

rgb=np.zeros((imgA.shape[0],imgA.shape[1],3));
rgb[:,:,order[0]]=imgAN
rgb[:,:,order[1]]=imgBN
rgb[:,:,order[2]]=0.5*(imgAN+imgBN)

return rgb

fig,(ax1,ax2,ax3)=plt.subplots(1,3,figsize=(15,6))
ax1.imshow(channelMix(imgA,imgB,order=(0,1,2))), ax1.set_title(r'ImgA$\rightarrow$R,
→˓ImgB$\rightarrow$G');
ax2.imshow(channelMix(imgA,imgB,order=(2,1,0))), ax2.set_title(r'ImgA$\rightarrow$B,
→˓ImgB$\rightarrow$G');
ax3.imshow(channelMix(imgA,imgB,order=(0,2,1))), ax3.set_title(r'ImgA$\rightarrow$R,
→˓ImgB$\rightarrow$B');

22 Chapter 5. Qualitative fusion: Registration and covisualization



CHAPTER

SIX

BIMODAL SEGMENTATION

6.1 Histogram of single modality

When you do experiments with a single modiality, you only obtain a single histogram. The modes of the histogram
may merge into a single mode if the SNR is too low to separate the feature classes. This leads to a large amount
of miss-classifications. The blue region between the histogram peaks in Figure 6.1 represents the area of ambiguous
decisions.

Fig. 6.1: Histogram of two classes using modality A.

6.2 Individual histograms of two modalities

Now we may conclude that the first modality we looked at doesn’t provide sufficient information to make a reliable
segmentation. Therefore, we go to a second modality. Unfortunately, this modality has the same low class separability
as you can see in Figure 6.2. This time the two classes have different responses and the histogram modes have swapped
compared to Figure 6.1.

So the conclusion is that we don’t get much closer to our segmented image using these modalities individually.

23
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Fig. 6.2: Histogram of two classes using modality B.

6.3 Bivariate histogram

Now, if we start combining the two modalities, we start seeing the benefit of using more than one modality. The
bivariate histogram, which we already have looked at in previous lectures is a great way to visualize how two variables
depend on each other.

Fig. 6.3: A bivariate histogram of modalities A and B.

In the histogram show in Figure 6.3, we see that there is a clear separation between class A and B that could be easily
thresholded.

6.3.1 Example: Roots in soil

6.3.2 Bivariate histogram of roots

6.4 Segmentation methods

6.4.1 Data

• Images from 𝑀 modalities 𝑓1, . . . , 𝑓𝑀

• Registered

24 Chapter 6. Bimodal segmentation



Quantitative Big Imaging - Bimodal experiments

Fig. 6.4: Tomography slices of a soil sample with roots.

Fig. 6.5: Bivariate histogram of the root images in Figure 6.4

6.4. Segmentation methods 25
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• Artifact corrected

6.4.2 Classes

The 𝑁 classes are described by: $

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ℋ1 : 𝑝(𝜇1,Σ1)

ℋ2 : 𝑝(𝜇2,Σ2)
...
ℋ𝑁 : 𝑝(𝜇𝑁 ,Σ𝑁 )

$

Duda, Hart, and Stork, 2001

6.5 Previous segmentation methods

In this class we have already looked into many different ways to perform the segmentation on images. These are
methods that are well suited for segmenting bi- or multivariate data:

• k-means

• k-NN

• Regression

• Neural networks

6.6 Gaussian mixture model

With Gaussian distribution we can describe the bivariate histogram using: $𝑝(𝜃) =
∑︀𝑁

1 𝜑𝑖 𝒩 (𝜇𝑖,Σ𝑖)$

• 𝜇𝑖 - vector with averages for each class.

• Σ𝑖 - covariance matrix for each class.

• 𝜑𝑖 - mixing coefficient.

# Number of samples per component
n_samples = 500

# Generate random sample, two components
np.random.seed(0)
C1 = np.array([[1, -0.5], [-0.5, 1]])
C2 = np.array([[1, 0.25], [0.25, 1]])
X = np.r_[np.dot(np.random.randn(n_samples, 2), C1), np.dot(np.random.randn(n_samples,
→˓ 2),C2) + np.array([-3, 3])]

plt.figure(figsize=[4,4])
plt.scatter(X[:,0],X[:,1],0.8)
plt.xlim(-7., 5.),plt.ylim(-4., 6.)
plt.title('Bi-variate data');

26 Chapter 6. Bimodal segmentation
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def plot_results(X, Y_, means, covariances, title, ax, showShape=True,
→˓showCenter=False):

color_iter = itertools.cycle(['navy', 'c', 'cornflowerblue', 'gold',
'darkorange'])

for i, (mean, covar, color) in enumerate(zip(
means, covariances, color_iter)):

v, w = linalg.eigh(covar)
v = 2. * np.sqrt(2.) * np.sqrt(v)
u = w[0] / linalg.norm(w[0])
# as the DP will not use every component it has access to
# unless it needs it, we shouldn't plot the redundant
# components.
if not np.any(Y_ == i):

continue
ax.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color)

# Plot an ellipse to show the Gaussian component
if showShape :

angle = np.arctan(u[1] / u[0])
angle = 180. * angle / np.pi # convert to degrees
ell = mpl.patches.Ellipse(mean, v[0], v[1], 180. + angle, color=color)
ell.set_clip_box(ax.bbox)
ell.set_alpha(0.5)
ax.add_artist(ell)

if showCenter :
ax.plot(mean[0],mean[1],'ro')

ax.set_xlim(-7., 5.)
ax.set_ylim(-4., 6.)
ax.set_title(title)
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6.6.1 Gaussian mixture model fitting

fig, axes = plt.subplots(2,2,figsize=(8,8))
# Fit a Gaussian mixture with EM using five components
for i,ax in zip(np.arange(0,len(axes.ravel())),axes.ravel()) :

gmm = mixture.GaussianMixture(n_components=i+1, covariance_type='full').fit(X)

plot_results(X, gmm.predict(X), gmm.means_, gmm.covariances_,
title='Gaussian Mixture ({} classes)'.format(i+1), ax=ax)
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6.7 Classification distances

For a set of multivariate normal distributions 𝑝𝑖 = 𝒩 (𝜇𝑖,Σ𝑖)

We can find the nearest neighbor class using the following distances

6.7.1 Euclidean

Distance between two points $𝐷𝐸 =
√︀

(𝑥− 𝜇1)𝑇 · (𝑥− 𝜇1)$

6.7.2 Mahanalubis

Distance from class 𝑖 to point 𝑥 $𝐷𝑀 =

√︁
(𝑥− 𝜇𝑖)

𝑇
Σ𝑖 (𝑥− 𝜇𝑖)$

6.7.3 Bhattacharia

Distance between two classes $𝐷𝐵 = 1
8 (𝜇1 − 𝜇2)

𝑇
Σ (𝜇1 − 𝜇2) + 1

2 ln

(︂
|Σ|√

|Σ1|·|Σ2|

)︂
Σ = Σ1+Σ2

2 $

Assign the point to the class with shortest distance.

6.8 Graphical presentation of different distances

gmm = mixture.GaussianMixture(n_components=2, covariance_type='full').fit(X)
m=[-1.6,1.3]
fig,(ax1,ax2,ax3)=plt.subplots(1,3,figsize=(15,4))

plot_results(X, gmm.predict(X), gmm.means_, gmm.covariances_,
'Euclidean distance',ax1, showShape=False,showCenter=True)

ax1.plot(-1.6,1.3,'rx')
plot_results(X, gmm.predict(X), gmm.means_, gmm.covariances_,

'Mahanalubis distance'.format(2),ax2, showCenter=True)
ax2.plot(-1.6,1.3,'rx')

plot_results(X, gmm.predict(X), gmm.means_, gmm.covariances_,
'Bhattacharia distance'.format(2),ax3, showCenter=True)

v=1
ell = mpl.patches.Ellipse(m, v, v, 0, color='orange')
ell.set_clip_box(ax3.bbox)
ell.set_alpha(0.5)
ax3.add_artist(ell)
ax3.plot(m[0],m[1],'rx');
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6.9 Segmentation by Euclidean distance

Fig. 6.6: Segmenting the root image in

kaestner2016_itmnrnx
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CHAPTER

SEVEN

BIVARIATE ESTIMATION: WORKING WITH ATTENUATION
COEFFICIENTS

7.1 Beer-Lamberts law

𝐼 = 𝐼0 𝑒
− 𝜌

𝐴 𝑁𝐴 𝜎 𝑥

• 𝜌 Material denstity

• 𝐴 Atomic weight

• 𝜎 microscopic cross section

– Probability of interaction

– modality dependent

• 𝑥 propagation length

7.2 Equation system

∑︁
𝑁
𝑖=1Σ𝑖 𝑥𝑖 = 𝑞𝑁∑︁
𝑁
𝑖=1𝜇𝑖 𝑥𝑖 = 𝑞𝑋

• attn coeff known → estimate lengths.

• More pixels → more materials.
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CHAPTER

EIGHT

BEYOND MULTI MODAL EXPERIMENTS

Many bimodal experiments are done separately.

There many reasons for this, two are:

• Limited resources

• Scanners at different locations

This is often the case in medical imaging where the hospitals have different dedicated machines for each modality. It
is also not always that the patient is scan using all relevant modalities at the same time, but different modalities are
used at different stages of the therapy.

This is also a common approach in materials science and ex situ imaging. The home laboratory may own their own
X-ray CT scanner but they need to got to a large scale facility to obtain more information with further modalities.

Next steps:

• Dynamic experiments

Last week we looked into the topic of dynamic experiments. The use of bimodal imaging is also very relevant in
dynamic experiments. The observed samples and processes often change shape when you introduce a liquid, apply
a preasure, etc. These shape changes are often more visible in one modality than the other. Ideally, you will have a
system where one modality is sensitive to dimensional changes while the other is sensity the changes in mixing ratios
and other process related parameters.

• Combined setups

Combined setups all simultaneous acquisition using two modalities. This has the advantage that you can perform
dynamic experiments.

Figure 6.3 show a setup for bimodal neutron and X-ray imaging. The system has two difference beam geometries
neutrons uses parallel beam and X-rays a cone beam. The beams are also at oblique angles and mostly also resulting
in different resolutions, there it is a first requirement that the resulting iamges are registered before any analysis can
be performed.
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Neutron beam

X-ra
y beam

Sample

Multiple turns

Neutron detector

X-ray detector

Fig. 8.1: The outline of a bimodal imaging system for neutrons and X-rays.
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CHAPTER

NINE

SOME SOFTWARE ENGINEERING

• Unit testing

• Working with repositories

• Contiuous integration

9.1 Unit Testing

In computer programming, unit testing is a method by which individual units of source code, sets of one or more
computer program modules together with associated control data, usage procedures, and operating procedures, are
tested to determine if they are fit for use.

• Intuitively, one can view a unit as the smallest testable part of an application

• Unit testing is possible with every language

• Most (Java, C++, Matlab, R, Python) have built in support for automated testing and reporting

Computational science: . . . Error

9.2 Unit Testing - design

The first requirement for unit testing to work well is to have your code divided up into small independent parts
(functions)

9.2.1 What to test?

• Each part can then be tested independently (unit testing)

– If the tests are well done, units can be changed and tested independently

– Makes upgrading or expanding tools easy

• The entire path can be tested (integration testing)

– Catches mistakes in integration or glue

35
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9.2.2 How to test

• The happy path - check what it is supposed to do

• To provoke your code - provide data that will fail execution

9.2.3 Test data

Ideally with realistic but simulated test data

9.3 Example

Given the following function function vxCnt=countVoxs(inImage)

We can write the following tests:

9.3.1 testEmpty2d

assert countVoxs(zeros(3,3)) == 0

9.3.2 testEmpty3d

assert countVoxs(zeros(3,3,3)) == 0

9.3.3 testDiag2d

assert countVoxs(eye(3)) == 3

9.4 Unit Testing: Example

Given the following function function shapeTable=shapeAnalysis(inImage)

We should decompose the function into sub-components with single tasks:

from graphviz import Digraph
dot = Digraph()
dot.edge('shapeAnalysis(inImage)', 'componentLabel(inImage)'), dot.edge(
→˓'shapeAnalysis(inImage)', 'analyzeObject(inObject)')
dot.edge('analyzeObject(inObject)','countVoxs(inObject)'), dot.edge(
→˓'analyzeObject(inObject)','calculateCOV(inObject)')
dot.edge('analyzeObject(inObject)','calcShapeT(covMat)'), dot.edge(
→˓'analyzeObject(inObject)','calcOrientation(shapeT)')
dot.edge('analyzeObject(inObject)','calcAnisotropy(shapeT)')
dot

<graphviz.dot.Digraph at 0x7fef897ce1c0>
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9.5 Unit Testing in Python

9.5.1 PyTest

Packages like PyTest are

• well suited for larger projects

• you make a set of specific tests for each module

• run each time the project is updated.

9.6 Unit testing examples from Scikit Image

https://github.com/scikit-image/scikit-image/tree/master/skimage

• Test Watershed

• Test Connected Components

class TestWatershed(unittest.TestCase):
eight = np.ones((3, 3), bool)

def test_watershed01(self):
"watershed 1"
data = np.array([[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],

[0, 1, 1, 1, 1, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], np.uint8)

markers = np.array([[ -1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],

[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 1, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0]],

np.int8)
out = watershed(data, markers, self.eight)
expected = np.array([[-1, -1, -1, -1, -1, -1, -1],

[-1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, 1, 1, 1, 1, 1, -1],
[-1, -1, -1, -1, -1, -1, -1],

(continues on next page)
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(continued from previous page)

[-1, -1, -1, -1, -1, -1, -1]])
error = diff(expected, out)
assert error < eps

9.7 Unit testing in python - DocTests

Keep the tests in the code itself:

def apply_hysteresis_threshold(image, low, high):
"""Apply hysteresis thresholding to `image`.
This algorithm finds regions where `image` is greater than `high`
OR `image` is greater than `low` *and* that region is connected to
a region greater than `high`.
Parameters
----------
image : array, shape (M,[ N, ..., P])

Grayscale input image.
low : float, or array of same shape as `image`

Lower threshold.
high : float, or array of same shape as `image`

Higher threshold.
Returns
-------
thresholded : array of bool, same shape as `image`

Array in which `True` indicates the locations where `image`
was above the hysteresis threshold.

Examples
--------
>>> image = np.array([1, 2, 3, 2, 1, 2, 1, 3, 2])
>>> apply_hysteresis_threshold(image, 1.5, 2.5).astype(int)
array([0, 1, 1, 1, 0, 0, 0, 1, 1])
References
----------
.. [1] J. Canny. A computational approach to edge detection.

IEEE Transactions on Pattern Analysis and Machine Intelligence.
1986; vol. 8, pp.679-698.
DOI: 10.1109/TPAMI.1986.4767851

"""
low = np.clip(low, a_min=None, a_max=high) # ensure low always below high
mask_low = image > low
mask_high = image > high

9.8 Unit Testing with Jupyter

Working primarily in notebooks makes regular testing more difficult but not impossible. If we employ a few simple
tricks we can use doctesting seamlessly inside of Jupyter. We can make what in python is called an annotatation to
setup this code.

import doctest
import copy
import functools

(continues on next page)
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(continued from previous page)

def autotest(func):
globs = copy.copy(globals())
globs.update({func.__name__: func})
doctest.run_docstring_examples(

func, globs, verbose=True, name=func.__name__)
return func

9.8.1 A very simple test

This test will be used in a jupyter notebook.

It is implemented as a DocTest. The function is supposed to return five added to the input value. The test is imple-
mented for the specific case with the input ‘5’ and we expect the function to return 10.

@autotest
def add_5(x):

"""
Function adds 5
>>> add_5(5)
10
"""
return x+5

Finding tests in add_5
Trying:

add_5(5)
Expecting:

10
ok

The test returned 10 and DocTest concludes that the test passed with an ‘ok’. This is a very simple function that
already assumes you enter a number, but what would happen if we call the function with a string of a complicated
object of some kind? The function should be extended with checks if the correct data type is provided, which in turn
would require further tests to verify that the functionality under these conditions.

9.8.2 Testing an image processing algorithm

Numerical algorithms are often hard to check with unit tests. In particular, when noise is added. You can however
always test the basic functionality. Below we have an example that tests wether the label function does what it is
supposed to do:

1. A single object - labels 0 and 1

2. Break the object in two - labels 0-2

from skimage.measure import label
import numpy as np
@autotest
def simple_label(x):

"""
Label an image
>>> test_img = np.eye(3)
>>> test_img

(continues on next page)
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(continued from previous page)

array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])

>>> simple_label(test_img)
array([[1, 0, 0],

[0, 1, 0],
[0, 0, 1]])

>>> test_img[1,1] = 0
>>> simple_label(test_img)
array([[1, 0, 0],

[0, 0, 0],
[0, 0, 2]])

"""
return label(x)

Finding tests in simple_label
Trying:

test_img = np.eye(3)
Expecting nothing
ok
Trying:

test_img
Expecting:

array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])

ok
Trying:

simple_label(test_img)
Expecting:

array([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])

ok
Trying:

test_img[1,1] = 0
Expecting nothing
ok
Trying:

simple_label(test_img)
Expecting:

array([[1, 0, 0],
[0, 0, 0],
[0, 0, 2]])

ok

40 Chapter 9. Some software engineering



Quantitative Big Imaging - Bimodal experiments

9.8.3 Unit Testing Matlab

https://www.mathworks.com/help/matlab/matlab-unit-test-framework.html

9.9 Test Driven Programming

Test Driven programming is a style or approach to programming where

1. the tests are written before the functional code.

2. The tests are like very concrete specifications.

3. It is easy to estimate project progress since you can automatically see how many of the tests have been passed.

You and your collaborators are clear on the utility of the system.

1. shapeAnalysis must give an anisotropy of 0 when we input a sphere

2. shapeAnalysis must give the center of volume within 0.5 pixels

3. shapeAnalysis must run on a 1000x1000 image in 30 seconds

9.10 Using repositories

A repository is (simply put) a backup system tailored to the needs of software development.

• Synchronizes multiple versions

• Manages development branches

• Located on a centralized server

9.10.1 Why should I use a repository?

• It makes it easy to got back to earlier versions

• It is good for reproducibility

• Makes bug tracking easier

• Easier for a team to work on the same code (without disturbing each other)

9.10.2 Different repository frameworks

• Git

• Azure

• Subversion

• CVS

fig,ax=plt.subplots(1,1,figsize=(10,4))
repodf = pd.read_csv('data/repository_popularity.csv',parse_dates=['Date'],index_col=[
→˓'Date'])
repodf.plot(ax=ax);

(continues on next page)
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(continued from previous page)

ax.set_xlabel('Year');
ax.set_ylabel('Market share [%]');

9.10.3 Git servers

There are many servers available. These services include

• Repository

• Issue tracking

• Project management (Kanban tables etc.)

Public

• GitHub

• GitLab

• BitBucket

Local

• ETH GitLab

9.11 Repository workflows

• Single branch (like a backup server withh comments)

• Multiple branches (Recommended)

The recommended workflow when you work with a repository is to generously work with branches for each new sub
task of the development. This make it easier to maintain a stable main branch that other people in the team can rely
on to perform the tasks correctly and without crashing. The work in the branches are merged into the main after
synchronization and review with a team mate.

GitHub tutorials
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Fig. 9.1: A snapshot of the branch network from a git repository.

9.12 Continuous Integration

Conntinuous integration is the process of running tests automatically everytime changes are made.

This is possible to setup inside of many IDEs and is offered as a commercial service from companies like CircleCI
and Travis.

We use them for the QBI course to make sure all of the code in the slides are correct.

Projects like scikit-image use them to ensure changes that are made do not break existing code without requiring
manual checks

9.12. Continuous Integration 43
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TEN

SUMMARY

10.1 Multiple modalities

• Add more information to improve the conclusions

• Add component in the analysis and visualization

• Data fusion can be done on different levels of abstraction.

10.2 Software engineering

• Unit testing

• Working with repositories

• Contiuous integration
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